Fast and Robust Numerical Solution of the Richards Equation in Homogeneous Soil

We derive and analyze a solver-friendly finite element discretization of a time discrete Richards equation based on Kirchhoff transformation. It can be interpreted as a classical finite element discretization in physical variables with nonstandard quadrature points. Our approach allows for nonlinear outflow or seepage boundary conditions of Signorini type. We show convergence of the saturation and, in the nondegenerate case, of the discrete physical pressure. The associated discrete algebraic problems can be formulated as discrete convex minimization problems and, therefore, can be solved efficiently by monotone multigrid methods. In numerical examples for two and three space dimensions we observe $L^2$-convergence rates of order $\mathcal{O}(h^2)$ and $H^1$-convergence rates of order $\mathcal{O}(h)$ as well as robust convergence behavior of the multigrid method with respect to extreme choices of soil parameters.

[1]  R. Glowinski Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  David L. Freyberg,et al.  The Use of COMSOL for Integrated Hydrological Modeling , 2007 .

[4]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[5]  Jürgen Appell,et al.  Nonlinear superposition operators: Preface , 1990 .

[6]  V. Mizel,et al.  Every superposition operator mapping one Sobolev space into another is continuous , 1979 .

[7]  Oliver Sander,et al.  Truncated Nonsmooth Newton Multigrid Methods for Convex Minimization Problems , 2009 .

[8]  I. Ginzburg,et al.  A seepage face model for the interaction of shallow water tables with the ground surface: Application of the obstacle-type method , 2006 .

[9]  Stephan Luckhaus,et al.  Quasilinear elliptic-parabolic differential equations , 1983 .

[10]  L. R. Ahuja,et al.  Infiltration and soil water movement , 1992 .

[11]  A. Visintin,et al.  On nonstationary flow through porous media , 1984 .

[12]  Ben Schweizer,et al.  Regularization of outflow problems in unsaturated porous media with dry regions , 2007 .

[13]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE , 2008, Computing.

[14]  Peter Knabner,et al.  A priori error estimates for a mixed finite element discretization of the Richards’ equation , 2004, Numerische Mathematik.

[15]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[16]  N. T. Burdine Relative Permeability Calculations From Pore Size Distribution Data , 1953 .

[17]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[18]  Heiko Berninger,et al.  Non-overlapping Domain Decomposition for the Richards Equation via Superposition Operators , 2009 .

[19]  J. Fuhrmann On Numerical Solution Methods for Nonlinear Parabolic Problems , 1997 .

[20]  The dam problem for non-linear Darcy's laws and non-linear leaky boundary conditions , 1997 .

[21]  Christopher E. Kees,et al.  Efficient steady-state solution techniques for variably saturated groundwater flow , 2002 .

[22]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[23]  R. Kornhuber Adaptive monotone multigrid methods for nonlinear variational problems , 1997 .

[24]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[25]  Hans-Jörg Vogel,et al.  Numerical Simulation and Experimental Studies of Unsaturated Water Flow in Heterogeneous Systems , 2007 .

[26]  Heiko Berninger,et al.  Domain decomposition methods for elliptic problems with jumping nonlinearities and application to the Richards equation , 2009 .

[27]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[28]  Hong Zheng,et al.  A new formulation of Signorini's type for seepage problems with free surfaces , 2005 .

[29]  L. A. Richards Capillary conduction of liquids through porous mediums , 1931 .

[30]  Ralf Kornhuber,et al.  On constrained Newton linearization and multigrid for variational inequalities , 2002, Numerische Mathematik.

[31]  Robert Eymard,et al.  The finite volume method for Richards equation , 1999 .

[32]  Mary Catherine A. Kropinski,et al.  Monotonicity Considerations for Saturated-Unsaturated Subsurface Flow , 1997, SIAM J. Sci. Comput..

[33]  Ralf Kornhuber,et al.  Convergence Behaviour of Dirichlet–Neumann and Robin Methods for a Nonlinear Transmission Problem , 2011 .

[34]  P. J. Hilton,et al.  Topologische lineare Raume I , 1962, The Mathematical Gazette.

[35]  Gabriel Wittum,et al.  Diffusions-Reaktionsprobleme in ungesättigten porösen Medien , 1997 .

[36]  M.I.J. van Dijke,et al.  Analysis of oil lens removal by extraction through a seepage face. , 1997 .

[37]  Oliver Sander,et al.  Substructuring of a Signorini-type problem and Robin’s method for the Richards equation in heterogeneous soil , 2010, Comput. Vis. Sci..

[38]  R. H. Brooks,et al.  Hydraulic properties of porous media , 1963 .

[39]  C. Kelley,et al.  Nonlinear multilevel iterative methods for multiscale models of air/water flow in porous media , 2006 .