A harmonic balance method for nonlinear fluid structure interaction problems

Abstract Over the past decade the Harmonic-Balance technique has been established as a viable alternative to direct time integration methods to predict periodic aeroelastic instabilities. This article reports the progress made in using a frequency updating procedure, based on a coupled fluid-structural solver using the Harmonic-Balance formulation. In particular, this paper presents an efficient implicit time-integrator that accelerates the convergence of the structural equations of motion to the final solution. To demonstrate the proposed approached, the paper includes a detailed investigation of the impact of input parameters and exercises the method for two types of fluid-structural nonlinear instabilities: transonic limit-cycle oscillations and vortex-induced vibrations.

[1]  Simao Marques,et al.  Prediction of Transonic Limit-Cycle Oscillations Using an Aeroelastic Harmonic Balance Method , 2015 .

[2]  Earl H. Dowell,et al.  Some Recent Advances in Nonlinear Aeroelasticity , 2015 .

[3]  Jeffrey V. Zweber,et al.  Predictions of Store-Induced Limit-Cylce Oscillations Using Euler and Navier-Stokes Fluid Dynamics , 2003 .

[4]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[5]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[6]  M. Sergio Campobasso,et al.  Analysis of Unsteady Flows Past Horizontal Axis Wind Turbine Airfoils Based on Harmonic Balance Compressible Navier-Stokes Equations With Low-Speed Preconditioning , 2011 .

[7]  Jeffrey P. Thomas,et al.  Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique , 2002 .

[8]  W. Yao,et al.  A harmonic balance technique for the reduced-order computation of vortex-induced vibration , 2016 .

[9]  Meng-Sing Liou,et al.  A nonlinear modeling approach using weighted piecewise series and its applications to predict unsteady flows , 2016, J. Comput. Phys..

[10]  M. Liou,et al.  Reduced-Order Modeling for Flutter/LCO Using Recurrent Artificial Neural Network , 2012 .

[11]  A. Mannarino,et al.  Nonlinear aeroelastic reduced order modeling by recurrent neural networks , 2014 .

[12]  J. Mottershead,et al.  Transonic aeroelastic simulation for instability searches and uncertainty analysis , 2011 .

[13]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[14]  Jeffrey P. Thomas,et al.  Nonlinear Inviscid Aerodynamic Effects on Transonic Divergence, Flutter, and Limit-Cycle Oscillations , 2001 .

[15]  Earl H. Dowell,et al.  Some Recent Advances in Nonlinear Aeroelasticity: Fluid- Structure Interaction in the 21 st Century , 2010 .

[16]  Jeffrey V. Zweber,et al.  Numerical Analysis of Store-Induced Limit-Cycle Oscillation , 2004 .

[17]  P. Beran,et al.  Reduced-order modeling: new approaches for computational physics , 2004 .

[18]  Ken Badcock,et al.  How Structural Model Variability Influences Transonic Aeroelastic Stability , 2012 .

[19]  A. Jameson,et al.  Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations , 1988 .

[20]  Li He,et al.  Computation of unsteady flows around oscillating blades using linear and nonlinear harmonic Euler methods , 1997 .

[21]  Matthias Haupt,et al.  Efficient Surrogate Modelling of Nonlinear Aerodynamics in Aerostructural Coupling Schemes , 2014 .

[22]  Simao Marques,et al.  Prediction of limit cycle oscillations under uncertainty using a Harmonic Balance method , 2015 .

[23]  F. Sicot,et al.  A Time-Domain Harmonic Balance Method for Dynamic Derivatives Predictions , 2011 .

[24]  W. Silva,et al.  Identification of Nonlinear Aeroelastic Systems Based on the Volterra Theory: Progress and Opportunities , 2005 .

[25]  P. Beran,et al.  Studies of Store-Induced Limit-Cycle Oscillations Using a Model with Full System Nonlinearities , 2004 .

[26]  Ken Badcock,et al.  Linear Frequency Domain and Harmonic Balance Predictions of Dynamic Derivatives , 2010 .

[27]  Juan J. Alonso,et al.  Demonstration of Nonlinear Frequency Domain Methods , 2006 .

[28]  Meng-Sing Liou,et al.  A sequel to AUSM, Part II: AUSM+-up for all speeds , 2006, J. Comput. Phys..

[29]  K. Badcock,et al.  Fast prediction of transonic aeroelastic stability and limit cycles , 2007 .

[30]  Ken Badcock,et al.  Bifurcation Prediction of Large-Order Aeroelastic Models , 2010 .

[31]  Bruce A. Wade,et al.  An ETD Crank‐Nicolson method for reaction‐diffusion systems , 2012 .

[32]  Mark Woodgate,et al.  Implicit computational fluid dynamics methods for fast analysis of rotor flows , 2012 .

[33]  Ken Badcock,et al.  Transonic Aeroelastic Stability Predictions Under the Influence of Structural Variability , 2010 .

[34]  Simao Marques,et al.  Application of a high-order CFD harmonic balance method to nonlinear aeroelasticity , 2017 .

[35]  W. YaoResearch Nonlinear Aerodynamic and Aeroelastic Model Reduction using a Discrete Empirical Interpolation Method , 2017 .

[36]  Kivanc Ekici,et al.  Harmonic Balance Analysis of Limit Cycle Oscillations in Turbomachinery , 2010 .