Bifurcation of burst response in an Amari‐Hopfield neuron pair with a periodic external force
暂无分享,去创建一个
Kazuyuki Aihara | Tetsushi Ueta | Shigeki Tsuji | Hiroshi Kawakami | K. Aihara | T. Ueta | H. Kawakami | S. Tsuji
[1] Mark Pernarowski,et al. Fast Subsystem Bifurcations in a Slowly Varying Liénard System Exhibiting Bursting , 1994, SIAM J. Appl. Math..
[2] Hiroyuki Kitajima,et al. Chaotic Bursts and bifurcation in Chaotic Neural Networks with Ring Structure , 2001, Int. J. Bifurc. Chaos.
[3] G. de Vries,et al. Multiple Bifurcations in a Polynomial Model of Bursting Oscillations , 1998 .
[4] Eugene M. Izhikevich,et al. Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.
[5] R. Bertram,et al. Topological and phenomenological classification of bursting oscillations. , 1995, Bulletin of mathematical biology.
[6] David Terman,et al. Properties of a Bursting Model with Two Slow Inhibitory Variables , 1993, SIAM J. Appl. Math..
[7] Hiroshi Kawakami,et al. Bifurcations in Synaptically Coupled BVP Neurons , 2001, Int. J. Bifurc. Chaos.
[8] T. Erneux,et al. Understanding bursting oscillations as periodic slow passages through bifurcation and limit points , 1993 .
[9] E. Izhikevich,et al. Weakly connected neural networks , 1997 .
[10] J. Rinzel,et al. Dissection of a model for neuronal parabolic bursting , 1987, Journal of mathematical biology.
[11] Thomas Erneux,et al. Slow Passage Through a Hopf Bifurcation: From Oscillatory to Steady State Solutions , 1993, SIAM J. Appl. Math..