A locally weighted machine learning model for generalized prediction of drift capacity in seismic vulnerability assessments

[1]  S. Schaal,et al.  Robot juggling: implementation of memory-based learning , 1994, IEEE Control Systems.

[2]  Young-Jin Cha,et al.  Optimal placement of active control devices and sensors in frame structures using multi‐objective genetic algorithms , 2013 .

[3]  Haifeng Wang,et al.  Comparison of SVM and LS-SVM for Regression , 2005, 2005 International Conference on Neural Networks and Brain.

[4]  Jui-Sheng Chou,et al.  Shear Strength Prediction in Reinforced Concrete Deep Beams Using Nature-Inspired Metaheuristic Support Vector Regression , 2016, J. Comput. Civ. Eng..

[5]  Orazio Giustolisi,et al.  Modelling mechanical behaviour of rubber concrete using evolutionary polynomial regression , 2011 .

[6]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[7]  Hyun-Han Kwon,et al.  Locally weighted polynomial regression: Parameter choice and application to forecasts of the Great Salt Lake , 2006 .

[8]  Billie F. Spencer,et al.  Direct performance-based design with 200kN MR dampers using multi-objective cost effective optimization for steel MRFs , 2014 .

[9]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[10]  Mahesh Pal,et al.  Support vector regression based shear strength modelling of deep beams , 2011 .

[11]  Amir Hossein Gandomi,et al.  Linear genetic programming for shear strength prediction of reinforced concrete beams without stirrups , 2014, Appl. Soft Comput..

[12]  Yoram Reich,et al.  Machine Learning Techniques for Civil Engineering Problems , 1997 .

[13]  Haris N. Koutsopoulos,et al.  Estimation of Vehicle Trajectories with Locally Weighted Regression , 2007 .

[14]  Amir Hossein Gandomi,et al.  A robust predictive model for base shear of steel frame structures using a hybrid genetic programming and simulated annealing method , 2011, Neural Computing and Applications.

[15]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[16]  D. Hand,et al.  Local Versus Global Models for Classification Problems , 2003 .

[17]  Léon Bottou,et al.  Local Algorithms for Pattern Recognition and Dependencies Estimation , 1993, Neural Computation.

[18]  Hojjat Adeli,et al.  Supervised Deep Restricted Boltzmann Machine for Estimation of Concrete , 2017 .

[19]  Mehmet Inel Modeling ultimate deformation capacity of RC columns using artificial neural networks , 2007 .

[20]  Giuseppe Quaranta,et al.  Evolutionary Polynomial Regression-Based Statistical Determination of the Shear Capacity Equation for Reinforced Concrete Beams without Stirrups , 2016, J. Comput. Civ. Eng..

[21]  Charles Audet,et al.  Locally weighted regression models for surrogate-assisted design optimization , 2016 .

[22]  Georgios Sermpinis,et al.  Reverse adaptive krill herd locally weighted support vector regression for forecasting and trading exchange traded funds , 2017, Eur. J. Oper. Res..

[23]  Léon Bottou,et al.  Local Learning Algorithms , 1992, Neural Computation.

[24]  Curt B. Haselton,et al.  Expected earthquake damage and repair costs in reinforced concrete frame buildings , 2012 .

[25]  Johan A. K. Suykens,et al.  Coupled Simulated Annealing , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[26]  Jonathan P. Stewart,et al.  Evaluation of the seismic performance of a code‐conforming reinforced‐concrete frame building—from seismic hazard to collapse safety and economic losses , 2007 .

[27]  Nhat-Duc Hoang,et al.  Punching shear capacity estimation of FRP-reinforced concrete slabs using a hybrid machine learning approach , 2016 .

[28]  Jack P. Moehle,et al.  Drift Capacity of Reinforced Concrete Columns with Light Transverse Reinforcement , 2005 .

[29]  Yeesock Kim,et al.  Multi-objective optimization for actuator and sensor layouts of actively controlled 3D buildings , 2013 .

[30]  Andrew W. Moore,et al.  Locally Weighted Learning for Control , 1997, Artificial Intelligence Review.

[31]  Shie-Jue Lee,et al.  A weighted LS-SVM based learning system for time series forecasting , 2015, Inf. Sci..

[32]  Ming Zhong,et al.  Hybrid artificial neural network and locally weighted regression models for lane-based short-term urban traffic flow forecasting , 2018, Transportation Planning and Technology.

[33]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[34]  Yeesock Kim,et al.  Multi-objective genetic algorithms for cost-effective distributions of actuators and sensors in large structures , 2012, Expert Syst. Appl..

[35]  Andrew W. Moore,et al.  Locally Weighted Learning , 1997, Artificial Intelligence Review.

[36]  Min-Yuan Cheng,et al.  Risk Score Inference for Bridge Maintenance Project Using Evolutionary Fuzzy Least Squares Support Vector Machine , 2014, J. Comput. Civ. Eng..

[37]  Manabu Kano,et al.  Optimum quality design system for steel products through locally weighted regression model , 2011 .

[38]  Santiago Pujol,et al.  Drift Capacity of Reinforced Concrete Columns Subjected to Cyclic Shear Reversals , 1999, SP-187: Seismic Response of Concrete Bridges.

[39]  Yacine Rezgui,et al.  Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption , 2017 .

[40]  Johan A. K. Suykens,et al.  Benchmarking Least Squares Support Vector Machine Classifiers , 2004, Machine Learning.

[41]  Jui-Sheng Chou,et al.  Smart Artificial Firefly Colony Algorithm‐Based Support Vector Regression for Enhanced Forecasting in Civil Engineering , 2015, Comput. Aided Civ. Infrastructure Eng..

[42]  Johan A. K. Suykens,et al.  Weighted least squares support vector machines: robustness and sparse approximation , 2002, Neurocomputing.

[43]  Stephanie German Paal,et al.  Machine Learning-Based Backbone Curve Model of Reinforced Concrete Columns Subjected to Cyclic Loading Reversals , 2018, J. Comput. Civ. Eng..