Improved Bound for the PPSZ/Schöning-Algorithm for 3-SAT

The PPSZ Algorithm presented by Paturi, Pudlak, Saks, and Zane in 1998 has the nice feature that the only satisfying solution of a uniquely satisfiable 3-SAT formula can be found in expected running time at most O(1.3071^n ). Its bound degenerates when the number of solutions increases. In 1999, Sch ning proved an O(1.3334^n ) bound for 3-SAT. In 2003, Iwama and Tamaki combined both algorithms to yield an O(1.3238^n ) bound. We tweak the PPSZ-Bound to get a slightly better contribution to the combined algorithm and prove an O(1.32216^n ) bound.

[1]  Kazuo Iwama,et al.  Improved upper bounds for 3-SAT , 2004, SODA '04.

[2]  Uwe Schöning A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems , 1999, FOCS.

[3]  Russell Impagliazzo,et al.  The complexity of unique k-SAT: an isolation lemma for k-CNFs , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[4]  Michael E. Saks,et al.  An improved exponential-time algorithm for k-SAT , 2005, JACM.

[5]  Daniel Rolf,et al.  3-SAT in RTIME(O(1.32793n)) - Improving Randomized Local Search by Initializing Strings of 3-Clauses , 2003, Electron. Colloquium Comput. Complex..

[6]  Walter Kern,et al.  An improved deterministic local search algorithm for 3-SAT , 2004, Theor. Comput. Sci..

[7]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[8]  Rainer Schuler,et al.  Improving a Probabilistic 3-SAT Algorithm by Dynamic Search and Independent Clause Pairs , 2003, SAT.

[9]  Pavel Pudlák,et al.  Satisfiability Coding Lemma , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[10]  Jon M. Kleinberg,et al.  A deterministic (2-2/(k+1))n algorithm for k-SAT based on local search , 2002, Theor. Comput. Sci..

[11]  Daniel Rolf,et al.  Derandomization of PPSZ for Unique- k-SAT , 2005, SAT.

[12]  Osamu Watanabe,et al.  A Probabilistic 3-SAT Algorithm Further Improved , 2002, STACS.