Robust Change Detection in the Dependence Structure of Multivariate Time Series

A robust change-point test based on the spatial sign covariance matrix is proposed. A major advantage of the test is its computational simplicity, making it particularly appealing for robust, high-dimensional data analysis. We derive the asymptotic distribution of the test statistic for stationary sequences, which we allow to be near-epoch dependent in probability (P NED) with respect to an α-mixing process. Contrary to the usual L2 near-epoch dependence, this short-range dependence condition requires no moment assumptions, and includes arbitrarily heavy-tailed processes. Further, we give a short review of the spatial sign covariance matrix and compare our test to a similar one based on the sample covariance matrix in a simulation study.

[1]  J. Tukey A survey of sampling from contaminated distributions , 1960 .

[2]  I. Ibragimov,et al.  Some Limit Theorems for Stationary Processes , 1962 .

[3]  David E. Tyler Radial estimates and the test for sphericity , 1982 .

[4]  David E. Tyler A Distribution-Free $M$-Estimator of Multivariate Scatter , 1987 .

[5]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics (Revised Edition) , 1999 .

[6]  Jeffrey M. Wooldridge,et al.  Some Invariance Principles and Central Limit Theorems for Dependent Heterogeneous Processes , 1988, Econometric Theory.

[7]  T. Bollerslev,et al.  Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model , 1990 .

[8]  P. Rousseeuw,et al.  Breakdown Points of Affine Equivariant Estimators of Multivariate Location and Covariance Matrices , 1991 .

[9]  D. G. Simpson,et al.  Robust principal component analysis for functional data , 2007 .

[10]  J. Marden Some robust estimates of principal components , 1999 .

[11]  J. Davidson,et al.  Consistency of Kernel Estimators of Heteroscedastic and Autocorrelated Covariance Matrices , 2000 .

[12]  H. Oja,et al.  Sign and rank covariance matrices , 2000 .

[13]  Cun-Hui Zhang,et al.  A modified Weiszfeld algorithm for the Fermat-Weber location problem , 2001, Math. Program..

[14]  S. Visuri,et al.  Array and multichannel signal processing using nonparametric statistics , 2001 .

[15]  Hannu Oja,et al.  The affine equivariant sign covariance matrix: asymptotic behavior and efficiencies , 2003 .

[16]  David E. Tyler,et al.  On the Breakdown Properties of Some Multivariate M‐Functionals * , 2005 .

[17]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[18]  Daniel Peña,et al.  Covariance changes detection in multivariate time series , 2007 .

[19]  Davy Paindaveine,et al.  A canonical definition of shape , 2008 .

[20]  Gabriel Frahm,et al.  Asymptotic distributions of robust shape matrices and scales , 2009, J. Multivar. Anal..

[21]  David E. Tyler,et al.  Tests and estimates of shape based on spatial signs and ranks , 2009 .

[22]  A. Aue,et al.  Break detection in the covariance structure of multivariate time series models , 2009, 0911.3796.

[23]  David E. Tyler A note on multivariate location and scatter statistics for sparse data sets , 2010 .

[24]  K. Nordhausen,et al.  OjaNP: Multivariate Methods Based on the Oja Median and Related Concepts , 2010 .

[25]  C. Croux,et al.  The k-step spatial sign covariance matrix , 2010, Adv. Data Anal. Classif..

[26]  Dominik Wied,et al.  TESTING FOR A CHANGE IN CORRELATION AT AN UNKNOWN POINT IN TIME USING AN EXTENDED FUNCTIONAL DELTA METHOD , 2011, Econometric Theory.

[27]  David E. Tyler,et al.  The asymptotic efficiency of the spatial median for elliptically symmetric distributions , 2011 .

[28]  Dominik Wied,et al.  Testing for Changes in the Rank Correlation of Time Series , 2012 .

[29]  David E. Tyler,et al.  The asymptotic inadmissibility of the spatial sign covariance matrix for elliptically symmetric distributions , 2013, 1309.1915.

[30]  Anne-Catherine Favre,et al.  Multivariate Kendall's tau for change-point detection in copulas , 2013 .

[31]  Dominik Wied,et al.  A fluctuation test for constant Spearman's rho with nuisance-free limit distribution , 2011, Comput. Stat. Data Anal..

[32]  Dominik Wied,et al.  Multiple break detection in the correlation structure of random variables , 2012, Comput. Stat. Data Anal..

[33]  Daniel Vogel,et al.  The spatial sign covariance matrix with unknown location , 2013, J. Multivar. Anal..

[34]  Johan Segers,et al.  Detecting changes in cross-sectional dependence in multivariate time series , 2012, J. Multivar. Anal..

[35]  Tom Rohmer,et al.  Testing the constancy of Spearman’s rho in multivariate time series , 2014, 1407.1624.

[36]  Daniel Vogel,et al.  Spatial sign correlation , 2014, J. Multivar. Anal..