Measurement of electrical potential, pH, and free calcium ion concentration in mitochondria of living cells by laser scanning confocal microscopy.

[1]  B. Herman,et al.  Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide. , 1995, The Biochemical journal.

[2]  B. Herman,et al.  Distribution of electrical potential, pH, free Ca2+, and volume inside cultured adult rabbit cardiac myocytes during chemical hypoxia: a multiparameter digitized confocal microscopic study. , 1994, Biophysical journal.

[3]  O. Seksek,et al.  SNARF-1 as an intracellular pH indicator in laser microspectrofluorometry: a critical assessment. , 1991, Analytical biochemistry.

[4]  D L Farkas,et al.  Simultaneous imaging of cell and mitochondrial membrane potentials. , 1989, Biophysical journal.

[5]  R. Tsien,et al.  Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. , 1989, The Journal of biological chemistry.

[6]  L M Loew,et al.  Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. , 1988, Biophysical journal.

[7]  M. Fordham,et al.  An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy , 1987, The Journal of cell biology.

[8]  J. Lemasters,et al.  Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. , 1986, Biochimica et biophysica acta.

[9]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[10]  P. Diliberto,et al.  Confocal imaging of Ca2+ in cells. , 1994, Methods in cell biology.

[11]  John J. Lemasters,et al.  Optical microscopy: emerging methods and applications , 1993 .