Modelación de series temporales usando ANFIS

En este articulo, se examina la modelacion de series temporales no lineales usando ANFIS. Se discute en primer lugar, su relacion con otros modelos estadisticos, y se presenta su formulacion con una generalizacion de estos; posteriormente, se analiza una aproximacion metodologica para su especificacion inicial basada en criterios estadisticos; y normalmente se presenta el caso del pronostico del precio de la electricidad en el Brasil en el mercado de corto plazo, como un ejemplo de aplicacion. Como resultado del estudio, se sugiere que la metodologia propuesta sea parte integral de la modelacion de series temporales usando ANFIS.

[1]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[2]  Andreas S. Weigend,et al.  Nonparametric selection of input variables for connectionist learning , 1996 .

[3]  M. Sugeno,et al.  Structure identification of fuzzy model , 1988 .

[4]  Faye Steiner Regulation, Industry Structure, and Performance in the Electricity Supply Industry , 2000 .

[5]  P. Pedroni The Econometric Modelling of Financial Time Series , 2001 .

[6]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[7]  H. Tong Non-linear time series. A dynamical system approach , 1990 .

[8]  J.-S.R. Jang,et al.  Input selection for ANFIS learning , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[9]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[10]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter , 1990 .

[11]  M. Priestley STATE‐DEPENDENT MODELS: A GENERAL APPROACH TO NON‐LINEAR TIME SERIES ANALYSIS , 1980 .

[12]  J.-S.R. Jang,et al.  Structure determination in fuzzy modeling: a fuzzy CART approach , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[13]  C. Granger,et al.  Modelling Nonlinear Economic Relationships , 1995 .

[14]  David W. Bacon,et al.  Estimating the transition between two intersecting straight lines , 1971 .

[15]  L. Bauwens,et al.  Econometrics , 2005 .

[16]  M. Sugeno,et al.  Derivation of Fuzzy Control Rules from Human Operator's Control Actions , 1983 .

[17]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[18]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[19]  Roberto Battiti,et al.  Using mutual information for selecting features in supervised neural net learning , 1994, IEEE Trans. Neural Networks.

[20]  Clive W. J. Granger,et al.  Strategies for Modelling Nonlinear Time‐Series Relationships* , 1993 .

[21]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  Chong-Ho Choi,et al.  Input feature selection for classification problems , 2002, IEEE Trans. Neural Networks.

[23]  D. Bunn,et al.  Interaction of judgemental and statistical forecasting methods: issues & , 1991 .

[24]  Simon Cowan,et al.  Regulatory Reform: Economic Analysis and British Experience , 1994 .

[25]  T. Teräsvirta Specification, Estimation, and Evaluation of Smooth Transition Autoregressive Models , 1994 .