Enriched mixtures of generalised Gaussian process experts

Mixtures of experts probabilistically divide the input space into regions, where the assumptions of each expert, or conditional model, need only hold locally. Combined with Gaussian process (GP) experts, this results in a powerful and highly flexible model. We focus on alternative mixtures of GP experts, which model the joint distribution of the inputs and targets explicitly. We highlight issues of this approach in multidimensional input spaces, namely, poor scalability and the need for an unnecessarily large number of experts, degrading the predictive performance and increasing uncertainty. We construct a novel model to address these issues through a nested partitioning scheme that automatically infers the number of components at both levels. Multiple response types are accommodated through a generalised GP framework, while multiple input types are included through a factorised exponential family structure. We show the effectiveness of our approach in estimating a parsimonious probabilistic description of both synthetic data of increasing dimension and an Alzheimer’s challenge dataset.

[1]  Van Der Vaart,et al.  Adaptive Bayesian estimation using a Gaussian random field with inverse Gamma bandwidth , 2009, 0908.3556.

[2]  David B. Dunson,et al.  Improving prediction from dirichlet process mixtures via enrichment , 2014, J. Mach. Learn. Res..

[3]  Robert B. Gramacy,et al.  Ja n 20 08 Bayesian Treed Gaussian Process Models with an Application to Computer Modeling , 2009 .

[4]  Radford M. Neal,et al.  A Split-Merge Markov chain Monte Carlo Procedure for the Dirichlet Process Mixture Model , 2004 .

[5]  Zoubin Ghahramani,et al.  Bayesian Cluster Analysis: Point Estimation and Credible Balls (with Discussion) , 2015, Bayesian Analysis.

[6]  P. Müller,et al.  Nonparametric Bayesian Modeling for Multivariate Ordinal Data , 2005 .

[7]  Warren B. Powell,et al.  Dirichlet Process Mixtures of Generalized Linear Models , 2009, J. Mach. Learn. Res..

[8]  Petar M. Djuric,et al.  Gibbs sampling approach for generation of truncated multivariate Gaussian random variables , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[9]  G. Baio,et al.  A comparative review of variable selection techniques for covariate dependent Dirichlet process mixture models , 2015, 1508.00129.

[10]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[11]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[12]  Stephen G. Walker,et al.  Slice sampling mixture models , 2011, Stat. Comput..

[13]  Max A. Little,et al.  Simple approximate MAP inference for Dirichlet processes mixtures , 2016 .

[14]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[15]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[16]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[17]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[18]  Zoubin Ghahramani,et al.  Variable Noise and Dimensionality Reduction for Sparse Gaussian processes , 2006, UAI.

[19]  Alvaro Soto,et al.  Embedded local feature selection within mixture of experts , 2014, Inf. Sci..

[20]  Simon Osindero,et al.  An Alternative Infinite Mixture Of Gaussian Process Experts , 2005, NIPS.

[21]  Antoni B. Chan,et al.  Generalized Gaussian process models , 2011, CVPR 2011.

[22]  Chao Yuan,et al.  Variational Mixture of Gaussian Process Experts , 2008, NIPS.

[23]  Volker Tresp,et al.  Mixtures of Gaussian Processes , 2000, NIPS.

[24]  Wei Wang,et al.  A Smart-Dumb/Dumb-Smart Algorithm for Efficient Split-Merge MCMC , 2015, UAI.

[25]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[26]  Guido Consonni,et al.  Conditionally Reducible Natural Exponential Families and Enriched Conjugate Priors , 2001 .

[27]  John W. Fisher,et al.  Parallel Sampling of DP Mixture Models using Sub-Cluster Splits , 2013, NIPS.

[28]  Michael I. Jordan,et al.  Variational inference for Dirichlet process mixtures , 2006 .

[29]  Carl E. Rasmussen,et al.  Infinite Mixtures of Gaussian Process Experts , 2001, NIPS.

[30]  Edwin V. Bonilla,et al.  Fast Allocation of Gaussian Process Experts , 2014, ICML.

[31]  Sonia Petrone,et al.  An enriched conjugate prior for Bayesian nonparametric inference , 2011 .

[32]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[33]  Radford M. Neal Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .