Parallel implementation of time-dependent density functional theory☆

[1]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[2]  Serdar Ogut,et al.  First-principles density-functional calculations for optical spectra of clusters and nanocrystals , 2002 .

[3]  D. Chong Recent Advances in Density Functional Methods Part III , 2002 .

[4]  J. Chelikowsky,et al.  Ab initio structures and polarizabilities of sodium clusters , 2001 .

[5]  J. Chelikowsky,et al.  Ab initio absorption spectra and optical gaps in nanocrystalline silicon. , 2001, Physical review letters.

[6]  J. C. Diaz,et al.  Incomplete Multilevel Cholesky Factorizations , 2001, SIAM J. Matrix Anal. Appl..

[7]  Yousef Saad,et al.  Parallel methods and tools for predicting material properties , 2000, Comput. Sci. Eng..

[8]  J. Chelikowsky,et al.  LARGE PAIRING JAHN-TELLER DISTORTIONS AROUND DIVACANCIES IN CRYSTALLINE SILICON , 1999 .

[9]  J. Chelikowsky,et al.  AB INITIO CLUSTER CALCULATIONS FOR VACANCIES IN BULK SI , 1997 .

[10]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[11]  Gross,et al.  Excitation energies from time-dependent density-functional theory. , 1996, Physical review letters.

[12]  Jorge M. Seminario,et al.  Recent developments and applications of modern density functional theory , 1996 .

[13]  Steven G. Louie,et al.  Quantum theory of real materials , 1996 .

[14]  A. Stathopoulos,et al.  Solution of large eigenvalue problems in electronic structure calculations , 1996 .

[15]  Mark T. Jones,et al.  An improved incomplete Cholesky factorization , 1995, TOMS.

[16]  Wu,et al.  Higher-order finite-difference pseudopotential method: An application to diatomic molecules. , 1994, Physical review. B, Condensed matter.

[17]  Y. Saad,et al.  Finite-difference-pseudopotential method: Electronic structure calculations without a basis. , 1994, Physical review letters.

[18]  D. J. Lockwood,et al.  Optical absorption evidence for quantum confinement effects in porous silicon , 1994 .

[19]  A. D. Yoffe,et al.  Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems , 1993 .

[20]  Delley,et al.  Quantum confinement in Si nanocrystals. , 1993, Physical review. B, Condensed matter.

[21]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[22]  Youcef Saad,et al.  A Basic Tool Kit for Sparse Matrix Computations , 1990 .

[23]  E. Gross,et al.  Density-Functional Theory , 1990 .

[24]  Warren E. Pickett,et al.  Pseudopotential methods in condensed matter applications , 1989 .

[25]  J. Chelikowsky,et al.  Electronic Structure and Optical Properties of Semiconductors , 1989 .

[26]  Furukawa,et al.  Quantum size effects on the optical band gap of microcrystalline Si:H. , 1988, Physical review. B, Condensed matter.

[27]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[28]  Jack Dongarra,et al.  ScaLAPACK Users' Guide , 1987 .

[29]  Yasutake Toyoshima,et al.  Vacuum ultraviolet absorption cross sections of SiH4, GeH4, Si2H6, and Si3H8 , 1986 .

[30]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[31]  M. Lannoo,et al.  Point Defects in Semiconductors II , 1981 .

[32]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[33]  D. O’Leary The block conjugate gradient algorithm and related methods , 1980 .

[34]  T. S. Moss,et al.  Handbook on semiconductors , 1980 .

[35]  G. Smith,et al.  Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .

[36]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[37]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[38]  A. Messiah Quantum Mechanics , 1961 .

[39]  E. M. Lifshitz,et al.  Classical theory of fields , 1952 .