Parallel implementation of time-dependent density functional theory☆
暂无分享,去创建一个
Yousef Saad | James R. Chelikowsky | Leeor Kronik | Igor Vasiliev | Y. Saad | J. Chelikowsky | L. Kronik | Manish Jain | I. Vasiliev | Manish Jain | W.Russell Burdick | W.Russell Burdick
[1] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[2] Serdar Ogut,et al. First-principles density-functional calculations for optical spectra of clusters and nanocrystals , 2002 .
[3] D. Chong. Recent Advances in Density Functional Methods Part III , 2002 .
[4] J. Chelikowsky,et al. Ab initio structures and polarizabilities of sodium clusters , 2001 .
[5] J. Chelikowsky,et al. Ab initio absorption spectra and optical gaps in nanocrystalline silicon. , 2001, Physical review letters.
[6] J. C. Diaz,et al. Incomplete Multilevel Cholesky Factorizations , 2001, SIAM J. Matrix Anal. Appl..
[7] Yousef Saad,et al. Parallel methods and tools for predicting material properties , 2000, Comput. Sci. Eng..
[8] J. Chelikowsky,et al. LARGE PAIRING JAHN-TELLER DISTORTIONS AROUND DIVACANCIES IN CRYSTALLINE SILICON , 1999 .
[9] J. Chelikowsky,et al. AB INITIO CLUSTER CALCULATIONS FOR VACANCIES IN BULK SI , 1997 .
[10] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[11] Gross,et al. Excitation energies from time-dependent density-functional theory. , 1996, Physical review letters.
[12] Jorge M. Seminario,et al. Recent developments and applications of modern density functional theory , 1996 .
[13] Steven G. Louie,et al. Quantum theory of real materials , 1996 .
[14] A. Stathopoulos,et al. Solution of large eigenvalue problems in electronic structure calculations , 1996 .
[15] Mark T. Jones,et al. An improved incomplete Cholesky factorization , 1995, TOMS.
[16] Wu,et al. Higher-order finite-difference pseudopotential method: An application to diatomic molecules. , 1994, Physical review. B, Condensed matter.
[17] Y. Saad,et al. Finite-difference-pseudopotential method: Electronic structure calculations without a basis. , 1994, Physical review letters.
[18] D. J. Lockwood,et al. Optical absorption evidence for quantum confinement effects in porous silicon , 1994 .
[19] A. D. Yoffe,et al. Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems , 1993 .
[20] Delley,et al. Quantum confinement in Si nanocrystals. , 1993, Physical review. B, Condensed matter.
[21] T. Arias,et al. Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .
[22] Youcef Saad,et al. A Basic Tool Kit for Sparse Matrix Computations , 1990 .
[23] E. Gross,et al. Density-Functional Theory , 1990 .
[24] Warren E. Pickett,et al. Pseudopotential methods in condensed matter applications , 1989 .
[25] J. Chelikowsky,et al. Electronic Structure and Optical Properties of Semiconductors , 1989 .
[26] Furukawa,et al. Quantum size effects on the optical band gap of microcrystalline Si:H. , 1988, Physical review. B, Condensed matter.
[27] Ed Anderson,et al. LAPACK Users' Guide , 1995 .
[28] Jack Dongarra,et al. ScaLAPACK Users' Guide , 1987 .
[29] Yasutake Toyoshima,et al. Vacuum ultraviolet absorption cross sections of SiH4, GeH4, Si2H6, and Si3H8 , 1986 .
[30] Wolfgang Hackbusch,et al. Multi-grid methods and applications , 1985, Springer series in computational mathematics.
[31] M. Lannoo,et al. Point Defects in Semiconductors II , 1981 .
[32] B. Alder,et al. THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .
[33] D. O’Leary. The block conjugate gradient algorithm and related methods , 1980 .
[34] T. S. Moss,et al. Handbook on semiconductors , 1980 .
[35] G. Smith,et al. Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .
[36] J. Meijerink,et al. An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .
[37] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[38] A. Messiah. Quantum Mechanics , 1961 .
[39] E. M. Lifshitz,et al. Classical theory of fields , 1952 .