Perceptual Completion across the Vertical Meridian and the Role of Early Visual Cortex

Perceptual completion can link widely separated contour fragments and interpolate illusory contours (ICs) between them. The mechanisms underlying such long-range linking are not well understood. Here we report that completion is much poorer when ICs cross the vertical meridian than when they reside entirely within the left or right visual hemifield. This deficit reflects limitations in cross-hemispheric integration. We also show that the sensitivity to the interhemispheric divide is unique to perceptual completion: a comparable task which did not require completion showed no across-meridian impairment. We propose that these findings support the existence of specialized completion mechanisms in early visual cortical areas (V1/V2), since those areas are likely to be more sensitive to the interhemispheric divide.

[1]  B. Gillam Perceptual Grouping and Subjective Contours , 1987 .

[2]  John J. Foxe,et al.  The Spatiotemporal Dynamics of Illusory Contour Processing: Combined High-Density Electrical Mapping, Source Analysis, and Functional Magnetic Resonance Imaging , 2002, The Journal of Neuroscience.

[3]  R. Blake Psychoanatomical strategies for studying human visual perception , 1995 .

[4]  M. Potter Meaning in visual search. , 1975, Science.

[5]  G. Innocenti General Organization of Callosal Connections in the Cerebral Cortex , 1986 .

[6]  S. Ullman,et al.  Filling-in the gaps: The shape of subjective contours and a model for their generation , 1976, Biological Cybernetics.

[7]  H. Wilson,et al.  Dynamics of travelling waves in visual perception , 2001, Nature.

[8]  M Dojat,et al.  Moving illusory contours activate primary visual cortex: an fMRI study. , 2000, Cerebral cortex.

[9]  Olaf Kübler,et al.  Simulation of neural contour mechanisms: from simple to end-stopped cells , 1992, Vision Research.

[10]  K. Nakayama,et al.  Abrupt learning and retinal size specificity in illusory-contour perception , 1997, Current Biology.

[11]  M. Peterson Object Recognition Processes Can and Do Operate Before Figure–Ground Organization , 1994 .

[12]  C. Gilbert,et al.  Spatial integration and cortical dynamics. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  D. B. Bender,et al.  Contributions of the corpus callosum and the anterior commissure to visual activation of inferior temporal neurons , 1977, Brain Research.

[14]  R. Shapley,et al.  Spatial and Temporal Properties of Illusory Contours and Amodal Boundary Completion , 1996, Vision Research.

[15]  R. von der Heydt,et al.  Mechanisms of contour perception in monkey visual cortex. II. Contours bridging gaps , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  S. Petry,et al.  The Perception of Illusory Contours , 1987 .

[17]  Irvin Rock,et al.  A Problem-Solving Approach to Illusory Contours , 1987 .

[18]  Shinsuke Shimojo,et al.  Da vinci stereopsis: Depth and subjective occluding contours from unpaired image points , 1990, Vision Research.

[19]  J. Bakin,et al.  Visual Responses in Monkey Areas V1 and V2 to Three-Dimensional Surface Configurations , 2000, The Journal of Neuroscience.

[20]  T. S. Lee,et al.  Dynamics of subjective contour formation in the early visual cortex. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[21]  G. Kanizsa Subjective contours. , 1976, Scientific American.

[22]  Patrice Y. Simard,et al.  Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. , 1994, Cerebral cortex.

[23]  L. Finkel,et al.  Extraction of perceptually salient contours by striate cortical networks , 1998, Vision Research.

[24]  Lance R. Williams,et al.  Stochastic Completion Fields: A Neural Model of Illusory Contour Shape and Salience , 1997, Neural Computation.

[25]  T. Wiesel,et al.  Intrinsic connectivity and receptive field properties in visual cortex , 1985, Vision Research.

[26]  Michael J. Hawken,et al.  Macaque VI neurons can signal ‘illusory’ contours , 1993, Nature.

[27]  Shimon Ullman,et al.  Structural Saliency: The Detection Of Globally Salient Structures using A Locally Connected Network , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[28]  N Rubin,et al.  The Role of Junctions in Surface Completion and Contour Matching , 2001, Perception.

[29]  A. Dale,et al.  The Representation of Illusory and Real Contours in Human Cortical Visual Areas Revealed by Functional Magnetic Resonance Imaging , 1999, The Journal of Neuroscience.

[30]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[31]  S. Grossberg Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures. , 1997, Psychological review.

[32]  P. Kellman,et al.  A theory of visual interpolation in object perception , 1991, Cognitive Psychology.

[33]  T. Papathomas Early vision and beyond , 1995 .

[34]  Nava Rubin,et al.  Salient and multiple illusory surfaces , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[35]  I. Biederman,et al.  On the information extracted from a glance at a scene. , 1974, Journal of experimental psychology.

[36]  P. Kellman,et al.  A common mechanism for illusory and occluded object completion. , 1998, Journal of experimental psychology. Human perception and performance.

[37]  W JacobsDavid,et al.  Stochastic completion fields , 1997 .

[38]  J Bullier,et al.  Organization of the callosal connections of visual areas v1 and v2 in the macaque monkey , 1986, The Journal of comparative neurology.

[39]  K. Grill-Spector,et al.  fMR-adaptation: a tool for studying the functional properties of human cortical neurons. , 2001, Acta psychologica.

[40]  S. Edelman,et al.  Human Brain Mapping 6:316–328(1998) � A Sequence of Object-Processing Stages Revealed by fMRI in the Human Occipital Lobe , 2022 .

[41]  S. Grossberg Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures. , 1997 .

[42]  Yoichi Sugita,et al.  Grouping of image fragments in primary visual cortex , 1999, Nature.

[43]  Joel L. Davis,et al.  Large-Scale Neuronal Theories of the Brain , 1994 .

[44]  A. Dale,et al.  The representation of the ipsilateral visual field in human cerebral cortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[45]  H Wallach,et al.  The role of memory in perceiving subjective contours , 1988, Perception & psychophysics.

[46]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[47]  S. Clarke,et al.  Occipital cortex in man: Organization of callosal connections, related myelo‐ and cytoarchitecture, and putative boundaries of functional visual areas , 1990, The Journal of comparative neurology.

[48]  G. Minguzzi,et al.  Anomalous Figures and the Tendency to Continuation , 1987 .

[49]  Peer Bork,et al.  The draft sequences: Filling in the gaps , 2001, Nature.

[50]  P. Bennett,et al.  Deriving behavioural receptive fields for visually completed contours , 2000, Current Biology.

[51]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[52]  Barton L. Anderson,et al.  The role of partial occlusion in stereopsis , 1994, Nature.

[53]  J. Fodor The Modularity of mind. An essay on faculty psychology , 1986 .

[54]  K. Nakayama,et al.  Enhanced Perception of Illusory Contours in the Lower Versus Upper Visual Hemifields , 1996, Science.

[55]  D. Mumford,et al.  The role of the primary visual cortex in higher level vision , 1998, Vision Research.

[56]  W T Newsome,et al.  Interhemispheric connections of visual cortex in the owl monkey, Aotus trivirgatus, and the bushbaby, Galago senegalensis , 1980, The Journal of comparative neurology.