SWAS observations of water vapor in the Venus mesosphere
暂无分享,去创建一个
M. Gurwell | E. Bergin | G. Melnick | B. Patten | V. Tolls
[1] M. Gurwell,et al. Mars surface and atmospheric temperature during the 2001 global dust storm , 2005 .
[2] R. Clancy,et al. Water vapor variations in the Venus mesosphere from microwave spectra , 2004 .
[3] E. Bergin,et al. Submillimeter Wave Astronomy Satellite Monitoring of the Postperihelion Water Production Rate of Comet C/1999 T1 (MCNaught-Hartley) , 2004 .
[4] M. Gurwell. Submillimeter Observations of Titan: Global Measures of Stratospheric Temperature, CO, HCN, HC3N, and the Isotopic Ratios 12C/13C and 14N/15N , 2004, astro-ph/0407169.
[5] M. Gurwell,et al. Submillimeter Wave Astronomy Satellite Performance on the ground and in orbit , 2004 .
[6] R. Clancy,et al. Observational definition of the Venus mesopause: vertical structure, diurnal variation, and temporal instability , 2003 .
[7] M. Harwit,et al. Submillimeter Wave Astronomy Satellite Observations of Water Vapor toward Comet C/1999 H1 (Lee) , 2000 .
[8] M. Gurwell,et al. Submillimeter Wave Astronomy Satellite Observations of Jupiter and Saturn:Detection of 557 GHz Water Emission from the Upper Atmosphere , 2000 .
[9] M. Gurwell,et al. Submillimeter Wave Astronomy Satellite Observations of the Martian Atmosphere: Temperature and Vertical Distribution of Water Vapor , 2000 .
[10] Thermal infrared spectroscopy of Europa and Callisto , 2000 .
[11] F. Mills. Water vapor in the venus middle atmosphere , 1999 .
[12] James M. Moran,et al. The Submillimeter Array , 2004, Astronomical Telescopes and Instrumentation.
[13] Gary J. Melnick,et al. The Submillimeter Wave Astronomy Satellite: Science Objectives and Instrument Description , 1998, Astronomical Telescopes and Instrumentation.
[14] F. Mills. I. Observations and Photochemical Modeling of the Venus Middle Atmosphere. II. Thermal Infrared Spectroscopy of Europa and Callisto , 1998 .
[15] P. Hamill,et al. A new parameterization of H2SO4/H2O aerosol composition: Atmospheric implications , 1997 .
[16] Donald M. Hunten,et al. Venus II--geology, geophysics, atmosphere, and solar wind environment , 1997 .
[17] P. Irwin. Temporal and spatial variations in the Venus mesosphere retrieved from Pioneer Venus OIR , 1997 .
[18] David Crisp,et al. Ground‐based near‐infrared observations of the Venus nightside: 1.27‐μm O2(a 1Δ g ) airglow from the upper atmosphere , 1996 .
[19] Athena Coustenis,et al. Detectability of molecular species in planetary and satellite atmospheres from their rotational transitions , 1995 .
[20] T. Encrenaz,et al. The Thermal Profile and Water Abundance in the Venus Mesosphere from H2O and HDO Millimeter Observations , 1995 .
[21] D. Muhleman,et al. Observations of the CO bulge on Venus and implications for mesospheric winds , 1995 .
[22] W. Borucki,et al. Venus O2 visible and IR nightglow : implications for lower thermosphere dynamics and chemistry , 1994 .
[23] M. Janssen. Atmospheric Remote Sensing by Microwave Radiometry , 1993 .
[24] P. Rosenkranz,et al. Absorption of Microwaves by Atmospheric Gases , 1993 .
[25] T. Encrenaz,et al. First detection of HDO in the atmosphere of Venus at radio wavelengths : an estimate of the H2O vertical distribution , 1991 .
[26] T. Owen,et al. Deuterium on Venus: Observations From Earth , 1991, Science.
[27] Duane O. Muhleman,et al. Long-term (1979–1990) changes in the thermal, dynamical, and compositional structure of the Venus Mesosphere as inferred from microwave spectral line observations of 12CO, 13CO, and C18O , 1991 .
[28] J. Gérard,et al. The Venus nitric oxide night airglow: Model calculations based on the Venus thermospheric general circulation model , 1990 .
[29] V. M. Linkin,et al. Water vapor and sulfur dioxide abundances at the Venus cloud tops from the Venera-15 infrared spectrometry data , 1990 .
[30] Jean-Michel Hartmann,et al. Temperature and perturber dependences of water vapor line-broadening. Experiments at 183 GHz; calculations below 1000 GHz , 1989 .
[31] B. Bézard,et al. The 12C/13C and 16O/18O ratios in the atmosphere of Venus from high-resolution 10-μm spectroscopy , 1987 .
[32] D. Muhleman,et al. Diurnal CO variations in the Venus mesophere from CO microwave spectra , 1985 .
[33] D. Muhleman,et al. Chemical-dynamical models of the Venus mesosphere based upon diurnal microwave CO variations☆ , 1985 .
[34] H. Müller,et al. Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.
[35] Henry E. Revercomb,et al. Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude , 1985 .
[36] Fredric W. Taylor,et al. The global distribution of water vapor in the middle atmosphere of Venus , 1982 .
[37] Y. Yung,et al. Photochemistry of the stratosphere of Venus: Implications for atmospheric evolution☆☆☆ , 1982 .
[38] David W. Rusch,et al. Morphology of the Venus ultraviolet night airglow , 1980 .
[39] A. Stewart,et al. Ultraviolet Night Airglow of Venus , 1979, Science.
[40] A. K. Hui,et al. Rapid computation of the Voigt and complex error functions , 1978 .
[41] G. Reesor,et al. Collision Induced Absorption in N2, CO2, and H2 at 2.3 cm−1 , 1975 .
[42] E. Barker. Observations of Venus water vapor over the disk of Venus: The 1972–1974 data using the H2O lines at 8197 Å and 8176 Å , 1975 .
[43] Prasad Varanasi,et al. Measurement of line widths of CO of planetary interest at low temperatures , 1975 .
[44] W. Ho. Microwave Absorption in Models of the Atmosphere of Venus. , 1966 .