Orientation control and self-assembled nanopyramid structure of LaFeO3 films epitaxially grown on SrTiO3(001) substrates

Epitaxial films of LaFeO3 (LFO) were grown on SrTiO3(001) (STO) substrates using pulsed laser deposition. Two epitaxial orientations were observed: α where LFO(110)∥STO(100) and β where LFO(001)∥STO(100). By controlling the deposition conditions, LaFeO3 films could be grown with just the α orientation or with simultaneous α and β orientations in which the film consisted of a self-assembled array of nanoscale β pyramids embedded in a matrix of α. The microstructure and growth mechanism of the films and their exchange-bias with a Co overlayer are discussed.

[1]  S J Pennycook,et al.  Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures , 2008, Science.

[2]  E. Fullerton,et al.  Antiferromagnetic LaFeO3 thin films and their effect on exchange bias , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  Quanxi Jia,et al.  Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. , 2008, Nature materials.

[4]  Jin-Cheng Zheng,et al.  Self-organization of epitaxial La0.35Pr0.275Ca0.375MnO3 manganite nanorods on NdGaO3 substrates , 2008 .

[5]  S. Cheong,et al.  Highly aligned epitaxial nanorods with a checkerboard pattern in oxide films. , 2008, Nano letters.

[6]  S. Venkatesan,et al.  Smallest 90° domains in epitaxial ferroelectric films , 2007, 0706.2487.

[7]  L. Heyderman,et al.  Sign dependence of the x-ray magnetic linear dichroism on the antiferromagnetic spin axis in LaFeO3 thin films , 2006 .

[8]  Elizabeth K. Reilly,et al.  Electric field-induced magnetization switching in epitaxial columnar nanostructures. , 2005, Nano letters.

[9]  Y. Takamura,et al.  Effects of thermal annealing in oxygen on the antiferromagnetic order and domain structure of epitaxial LaFeO3 thin films , 2005 .

[10]  B. Dabrowski,et al.  Contribution of oxygen partial pressures investigated over a wide range to SrRuO3 thin-film properties in laser deposition processing , 2005 .

[11]  K. I. Gnanasekar,et al.  Self-assembled three-dimensional epitaxial ionic fluorite Gd2Zr2O7 nanorods on (001) LaAlO3 , 2005 .

[12]  H. Christen,et al.  Strong polarization enhancement in asymmetric three-component ferroelectric superlattices , 2005, Nature.

[13]  K. I. Gnanasekar,et al.  Self-Assembly of Highly Epitaxial (La,Sr)MnO3 Nanorods on (001) LaAlO3 , 2004 .

[14]  R Ramesh,et al.  Multiferroic BaTiO3-CoFe2O4 Nanostructures , 2004, Science.

[15]  K. Wiik,et al.  High temperature transport kinetics in heteroepitaxial LaFeO3 thin films , 2003 .

[16]  R. Dittmann,et al.  Early self-assembled stages in epitaxial SrRuO3 on LaAlO3 , 2003 .

[17]  V. Tsurkan,et al.  Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1–x:(MgO)x nanocomposite films , 2003, Nature materials.

[18]  Lu-ning,et al.  Observation of antiferromagnetic domains in epitaxial thin films , 2000, Science.

[19]  S. Pennycook,et al.  Plume-induced stress in pulsed-laser deposited CeO2 films , 1999 .

[20]  Albert-László Barabási,et al.  Self-assembled island formation in heteroepitaxial growth , 1997, cond-mat/9703252.

[21]  S. Dann,et al.  The effect of oxygen stoichiometry on phase relations and structure in the system La1-xSrxFeO3-δ (0≤x≤1, 0≤δ≤0.5) , 1994 .