Constructions of three kinds of Bihom-superalgebras

<p style='text-indent:20px;'>The purpose of this paper is to study the constructions between Bihom-alternative superalgebras and Bihom-Malcev superalgebras and Bihom-Jordan superalgebras. First, we explain in detail that every regular Bihom-alternative superalgebra could be Bihom-Malcev-admissible superalgebra or Bihom-Jordan-admissible superalgebra. Next, the bimodules and <inline-formula><tex-math id="M1">\begin{document}$ T^*_\theta $\end{document}</tex-math></inline-formula>-extensions of Bihom-alternative superalgebras are also discussed as properties of Bihom-alternative superalgebras.</p>

[1]  Simple Jordan superalgebras with semisimple even part , 2003 .

[2]  I. Shestakov,et al.  PRIME ALTERNATIVE SUPERALGEBRAS AND NILPOTENCE OF THE RADICAL OF A FREE ALTERNATIVE ALGEBRA , 1991 .

[3]  I. Shestakov Quantization of poisson superalgebras and speciality of jordan poisson superalgebras , 1993 .

[4]  C. Martínez,et al.  REPRESENTATION THEORY OF JORDAN SUPERALGEBRAS I , 2009 .

[5]  V. T. Filippov Imbedding of mal'tsev algebras into alternative algebras , 1983 .

[6]  M. López-Díaz,et al.  Representations of exceptional simple alternative superalgebras of characteristic 3 , 2002 .

[7]  A. Elduque,et al.  Prime non-Lie modules for Mal'tsev superalgebras , 1994 .

[8]  Shuangjian Guo,et al.  BiHom–Lie Superalgebra Structures and BiHom–Yang–Baxter Equations , 2020 .

[9]  C. Menini,et al.  BiHom-associative algebras, BiHom-Lie algebras and BiHom-bialgebras , 2015, 1505.00469.

[10]  Yunhe Sheng,et al.  Representations of Hom-Lie Algebras , 2010, 1005.0140.

[11]  C. Menini,et al.  Rota–Baxter operators on BiHom-associative algebras and related structures , 2017, Colloquium Mathematicum.

[12]  A. Makhlouf,et al.  BiHom-alternative, BiHom-Malcev and BiHom-Jordan algebras , 2018, Rocky Mountain Journal of Mathematics.

[13]  V. T. Filippov Varieties of Mal'tsev algebras , 1981 .

[14]  Shuangjian Guo,et al.  The construction and deformation of BiHom-Novikov algebras , 2017, Journal of Geometry and Physics.

[15]  Classification of linearly compact simple Jordan and generalized Poisson superalgebras , 2006, math/0608390.

[16]  Liangyun Chen,et al.  Hom-Nijienhuis operators and T⁎-extensions of hom-Lie superalgebras☆ , 2013, 1304.7338.

[17]  A. Gohr On hom-algebras with surjective twisting , 2009, 0906.3270.

[18]  Liangyun Chen,et al.  Representations and T*-Extensions of Hom–Jordan–Lie Algebras , 2014, 1405.2662.