Stochastic low-dimensional modelling of a random laminar wake past a circular cylinder

We present a new compact expansion of a random flow field into stochastic spatial modes, hence extending the proper orthogonal decomposition (POD) to noisy (non-coherent) flows. As a prototype problem, we consider unsteady laminar flow past a circular cylinder subject to random inflow characterized as a stationary Gaussian process. We first obtain random snapshots from full stochastic simulations (based on polynomial chaos representations), and subsequently extract a small number of deterministic modes and corresponding stochastic modes by solving a temporal eigenvalue problem. Finally, we determine optimal sets of random projections for the stochastic Navier–Stokes equations, and construct reduced-order stochastic Galerkin models. We show that the number of stochastic modes required in the reconstruction does not directly depend on the dimensionality of the flow system. The framework we propose is general and it may also be useful in analysing turbulent flows, e.g. in quantifying the statistics of energy exchange between coherent modes.

[1]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[2]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[3]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[4]  I. Kevrekidis,et al.  Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .

[5]  D. Rempfer LOW-DIMENSIONAL MODELING AND NUMERICAL SIMULATION OF TRANSITION IN SIMPLE SHEAR FLOWS , 2003 .

[6]  J. Zinn-Justin Quantum Field Theory and Critical Phenomena , 2002 .

[7]  G. Karniadakis,et al.  Long-Term Behavior of Polynomial Chaos in Stochastic Flow Simulations , 2006 .

[8]  Nadine Aubry,et al.  Spatio-temporal symmetries and bifurcations via bi-orthogonal decompositions , 1992 .

[9]  W. Meecham,et al.  Wiener-Hermite Expansion in Model Turbulence at Large Reynolds Numbers , 1964 .

[10]  Robert Jenssen,et al.  Kernel Maximum Entropy Data Transformation and an Enhanced Spectral Clustering Algorithm , 2006, NIPS.

[11]  G. Karniadakis,et al.  DPIV-driven flow simulation: a new computational paradigm , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  J. Lumley Stochastic tools in turbulence , 1970 .

[13]  Bernhard Schölkopf,et al.  A kernel view of the dimensionality reduction of manifolds , 2004, ICML.

[14]  K. Ritter,et al.  High dimensional integration of smooth functions over cubes , 1996 .

[15]  Anirvan M. Sengupta,et al.  Distributions of singular values for some random matrices. , 1997, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  J. W. Silverstein,et al.  On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices , 2007 .

[17]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[18]  T. Kailath,et al.  Orthogonal functionals of independent-increment processes , 1976, IEEE Trans. Inf. Theory.

[19]  M. Kaminski,et al.  Stochastic perturbation‐based finite element approach to fluid flow problems , 2005 .

[20]  Jean-Paul Bonnet,et al.  Examination of large-scale structures in a turbulent plane mixing layer. Part 1. Proper orthogonal decomposition , 1999, Journal of Fluid Mechanics.

[21]  W. Meecham,et al.  Application of the Wiener–Hermite expansion to turbulence of moderate Reynolds number , 1982 .

[22]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[23]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[24]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[25]  P. Loubaton,et al.  The empirical distribution of the eigenvalues of a Gram matrix with a given variance profile , 2004, math/0411333.

[26]  Kilian Q. Weinberger,et al.  Learning a kernel matrix for nonlinear dimensionality reduction , 2004, ICML.

[27]  Roger Ghanem,et al.  Stochastic model reduction for chaos representations , 2007 .

[28]  Richard M. Everson,et al.  Inferring the eigenvalues of covariance matrices from limited, noisy data , 2000, IEEE Trans. Signal Process..

[29]  Bernd R. Noack,et al.  The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows , 2005, Journal of Fluid Mechanics.

[30]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[31]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[32]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[33]  Clayton G. Webster Sparse grid stochastic collocation techniques for the numerical solution of partial differential equations with random input data , 2007 .

[34]  S. Bodner Turbulence Theory with a Time‐Varying Wiener‐Hermite Basis , 1969 .

[35]  Daniele Venturi,et al.  On proper orthogonal decomposition of randomly perturbed fields with applications to flow past a cylinder and natural convection over a horizontal plate , 2006, Journal of Fluid Mechanics.

[36]  George Em Karniadakis,et al.  Dynamics and low-dimensionality of a turbulent near wake , 2000, Journal of Fluid Mechanics.

[37]  Nicholas Zabaras,et al.  A concurrent model reduction approach on spatial and random domains for the solution of stochastic PDEs , 2006 .

[38]  W. Meecham,et al.  Use of the Wiener—Hermite expansion for nearly normal turbulence , 1968, Journal of Fluid Mechanics.

[39]  K. Ritter,et al.  Simple Cubature Formulas with High Polynomial Exactness , 1999 .

[40]  Nadine Aubry,et al.  On The Hidden Beauty of the Proper Orthogonal Decomposition , 1991 .

[41]  Magnus Rattray,et al.  A Statistical Mechanics Analysis of Gram Matrix Eigenvalue Spectra , 2004, COLT.

[42]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[43]  José Carlos Príncipe,et al.  Kernel Principal Components Are Maximum Entropy Projections , 2006, ICA.

[44]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[45]  Gilles Blanchard,et al.  Statistical properties of Kernel Prinicipal Component Analysis , 2019 .

[46]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[47]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[48]  J. Burkardt,et al.  REDUCED ORDER MODELING OF SOME NONLINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[49]  Victor Martin-Mayor,et al.  Field Theory, the Renormalization Group and Critical Phenomena , 1984 .

[50]  Stanislav Gordeyev,et al.  Coherent structure in the turbulent planar jet. Part 1. Extraction of proper orthogonal decomposition eigenmodes and their self-similarity , 2000, Journal of Fluid Mechanics.

[51]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.