Modified Projective Synchronization of a New Hyperchaotic System via Nonlinear Control

In this paper, a nonlinear control scheme of two identical hyperchaotic Chen systems is developed to realize their modified projective synchronization. We achieve modified projective synchronization between the two identical hyperchaotic systems by directing the scaling factor onto the desired value. With symbolic computation system Maple and Lyapunov stability theory, numerical simulations are given to perform the process of the synchronization.

[1]  Yong Chen,et al.  Function Projective Synchronization of Discrete-Time Chaotic Systems , 2008 .

[2]  Jianping Yan,et al.  Generalized projective synchronization of a unified chaotic system , 2005 .

[3]  Wang Xingyuan,et al.  Generalized synchronization via nonlinear control. , 2008, Chaos.

[4]  A. Cenys,et al.  Hyperchaotic oscillator with gyrators , 1997 .

[5]  L. Chua,et al.  Hyper chaos: Laboratory experiment and numerical confirmation , 1986 .

[6]  Xingyuan Wang,et al.  Adaptive Synchronization For A Class Of High-Dimensional Autonomous Uncertain Chaotic Systems , 2007 .

[7]  Li Xin,et al.  Generalized Projective Synchronization Between Rössler System and New Unified Chaotic System , 2007 .

[8]  Zhenya Yan,et al.  A new scheme to generalized (lag, anticipated, and complete) synchronization in chaotic and hyperchaotic systems. , 2005, Chaos.

[9]  Yong Chen,et al.  FUNCTION PROJECTIVE SYNCHRONIZATION BETWEEN TWO IDENTICAL CHAOTIC SYSTEMS , 2007 .

[10]  Lawrence Stark Stability and Oscillations , 1968 .

[11]  Parlitz,et al.  Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. , 1996, Physical review letters.

[12]  Ljupco Kocarev,et al.  A unifying definition of synchronization for dynamical systems. , 1998, Chaos.

[13]  Yong Chen,et al.  Function Projective Synchronization between two Different Chaotic Systems , 2007 .

[14]  K. Stefanski Modelling chaos and hyperchaos with 3-D maps , 1998 .

[15]  Ju H. Park Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter , 2007 .

[16]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[17]  Xiao-Song Yang,et al.  A framework for synchronization theory , 2000 .

[18]  Pei Yu,et al.  Hyperchaos synchronization and control on a new hyperchaotic attractor , 2008 .

[19]  Giuseppe Grassi,et al.  New 3D-scroll attractors in hyperchaotic Chua's Circuits Forming a Ring , 2003, Int. J. Bifurc. Chaos.

[20]  Guohui Li,et al.  Generalized projective synchronization of two chaotic systems by using active control , 2006 .

[21]  Guanrong Chen,et al.  Generating Hyperchaos via State Feedback Control , 2005, Int. J. Bifurc. Chaos.

[22]  A. Tamasevicius,et al.  Simple 4D chaotic oscillator , 1996 .

[23]  O. Rössler An equation for hyperchaos , 1979 .

[24]  Ahmed M. Farghaly An Active Control For Chaos Synchronization Of Real And Complex Van Der Pol Oscillators , 2007 .

[25]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[26]  Ronnie Mainieri,et al.  Projective Synchronization In Three-Dimensional Chaotic Systems , 1999 .

[27]  Zhenya Yan,et al.  Chaos Q–S synchronization between Rössler system and the new unified chaotic system , 2005 .

[28]  Guohui Li Modified projective synchronization of chaotic system , 2007 .

[29]  Daolin Xu,et al.  Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems , 2005 .

[30]  Zhenya Yan,et al.  Q-S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic systems--a symbolic-numeric computation approach. , 2005, Chaos.