Equation of state and electrical conductivity of water and ammonia shocked to the 100 GPa (1 Mbar) pressure range

Dynamic equation‐of‐state data for liquid H2O and NH3 were measured in the shock pressure range 30–230 GPa (0.3–2.3 Mbar) using a two‐stage light‐gas gun. Electrical conductivities of water were also measured in the shock pressure range 28–59 GPa (280–590 kbar). The experimental techniques to measure the electrical conductivity in a 50 ns time interval and to cool the target holders to liquid ammonia temperatures (230 K) are described. The H2O data are discussed in terms of the statistical mechanics model of Ree. At temperatures above 3000 K significant molecular ionization occurs.

[1]  G. Lyzenga,et al.  The temperature of shock‐compressed water , 1982 .

[2]  W. Holzapfel Effect of Pressure and Temperature on the Conductivity and Ionic Dissociation of Water up to 100 kbar and 1000°C , 1969 .

[3]  C. Mader Numerical modeling of detonations , 1979 .

[4]  S. D. Hamann,et al.  The chemical effects of pressure. Part 5.—The electrical conductivity of water at high shock pressures , 1959 .

[5]  J. Baconin,et al.  Experimental results for extending the Rice‐Walsh equation of state of water , 1973 .

[6]  Francis H. Ree,et al.  Molecular interaction of dense water at high temperature , 1982 .

[7]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[8]  W. Nellis,et al.  Diagnostic system of the Lawrence Livermore National Laboratory two-stage light-gas gun , 1981 .

[9]  C. J. Maiden,et al.  Measurement of the Very‐High‐Pressure Properties of Materials using a Light‐Gas Gun , 1966 .

[10]  R. Shaw,et al.  Cυ(T) Equation of State for Liquids. Calculation of the Shock Temperature of Carbon Tetrachloride, Nitromethane, and Water in the 100‐kbar Region , 1970 .

[11]  M. Eigen,et al.  Self-dissociation and protonic charge transport in water and , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[12]  S. D. Hamann,et al.  The Viscosity of Water under Shock Compression , 1969 .

[13]  William J. Nellis,et al.  Shock compression of liquid argon, nitrogen, and oxygen to 90 GPa (900 kbar) , 1980 .

[14]  S. D. Hamann,et al.  Electrical conductivities of aqueous solutions of KCl, KOH and HCl, and the ionization of water at high shock pressures , 1969 .

[15]  C. Pistorius,et al.  Melting Curve of Ice VII to 200 kbar , 1963 .

[16]  S. Kormer Reviews of Topical Problems: Optical Study of the Characteristics of Shock-Compressed Condensed Dielectrics , 1968 .

[17]  Felix Franks,et al.  Water:A Comprehensive Treatise , 1972 .

[18]  R. Papetti,et al.  The Rice and Walsh Equation of State for Water , 1968 .

[19]  J. Walsh,et al.  Equation of State of Water to 250 Kilobars , 1957 .

[20]  W. Hubbard,et al.  Structure and evolution of Uranus and Neptune , 1980 .

[21]  D. A. Young Thermodynamics of nuclear materials International atomic energy agency, Vienna, proceedings series, 808 pages, 1962, 66s, $ 11.00, NF 44, DM 38.50 , 1963 .

[22]  Walter Kauzmann,et al.  The Structure and Properties of Water , 1969 .

[23]  W. Nellis,et al.  Shock compression of aluminum, copper, and tantalum , 1981 .

[24]  J. Walsh,et al.  Dynamic Compression of Liquids from Measurements on Strong Shock Waves , 1957 .

[25]  G. Kell,et al.  Effects of isotopic composition, temperature, pressure, and dissolved gases on the density of liquid water , 1977 .

[26]  J. Gallagher,et al.  Thermodynamic Properties of Ammonia , 1978 .

[27]  Shock compression of liquid carbon monoxide and methane to 90 GPa (900 kbar) , 1981 .

[28]  J. W. Kirsch,et al.  Analytical Equation of State for Water Compressed to 300 Kbar , 1971 .

[29]  R. P. Benedict,et al.  Manual on the use of thermocouples in temperature measurement , 1974 .

[30]  R. D. Dick Shock compression data for liquids. III. Substituted methane compounds, ethylene glycol, glycerol, and ammonia , 1981 .