PAVED: Pareto Front Visualization for Engineering Design

Design problems in engineering typically involve a large solution space and several potentially conflicting criteria. Selecting a compromise solution is often supported by optimization algorithms that compute hundreds of Pareto‐optimal solutions, thus informing a decision by the engineer. However, the complexity of evaluating and comparing alternatives increases with the number of criteria that need to be considered at the same time. We present a design study on Pareto front visualization to support engineers in applying their expertise and subjective preferences for selection of the most‐preferred solution. We provide a characterization of data and tasks from the parametric design of electric motors. The requirements identified were the basis for our development of PAVED, an interactive parallel coordinates visualization for exploration of multi‐criteria alternatives. We reflect on our user‐centered design process that included iterative refinement with real data in close collaboration with a domain expert as well as a summative evaluation in the field. The results suggest a high usability of our visualization as part of a real‐world engineering design workflow. Our lessons learned can serve as guidance to future visualization developers targeting multi‐criteria optimization problems in engineering design or alternative domains.

[1]  Jeffrey Heer,et al.  D³ Data-Driven Documents , 2011, IEEE Transactions on Visualization and Computer Graphics.

[2]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[3]  Valerio Pascucci,et al.  Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[4]  David G. Ullman,et al.  Robust decision-making for engineering design , 2001 .

[5]  Michael Schwärzler,et al.  LiteVis: Integrated Visualization for Simulation-Based Decision Support in Lighting Design , 2016, IEEE Transactions on Visualization and Computer Graphics.

[6]  Clifford A. Shaffer,et al.  Visualization for multiparameter aircraft designs , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[7]  Denis Gracanin,et al.  Interactive visual analysis and exploration of injection systems simulations , 2005, VIS 05. IEEE Visualization, 2005..

[8]  Pamela Jordan Basics of qualitative research: Grounded theory procedures and techniques , 1994 .

[9]  Andreas Butz,et al.  RelEx: Visualization for Actively Changing Overlay Network Specifications , 2012, IEEE Transactions on Visualization and Computer Graphics.

[10]  Philip T. Kortum,et al.  Determining what individual SUS scores mean: adding an adjective rating scale , 2009 .

[11]  Martin Graham,et al.  Using curves to enhance parallel coordinate visualisations , 2003, Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003..

[12]  Eric J. Johnson,et al.  The adaptive decision maker , 1993 .

[13]  Melanie Tory,et al.  Evaluating Visualizations: Do Expert Reviews Work? , 2005, IEEE Computer Graphics and Applications.

[14]  Tamara Munzner,et al.  Vismon: Facilitating Analysis of Trade‐Offs, Uncertainty, and Sensitivity In Fisheries Management Decision Making , 2012, Comput. Graph. Forum.

[15]  Alexander V. Lotov,et al.  Interactive Decision Maps: Approximation and Visualization of Pareto Frontier , 2004 .

[16]  M. Sheelagh T. Carpendale,et al.  Empirical Studies in Information Visualization: Seven Scenarios , 2012, IEEE Transactions on Visualization and Computer Graphics.

[17]  John W. Payne,et al.  The adaptive decision maker: Name index , 1993 .

[18]  A. Strauss,et al.  Basics of qualitative research: Grounded theory procedures and techniques. , 1992 .

[19]  Dan M. Ionel,et al.  A review of recent developments in electrical machine design optimization methods with a permanent magnet synchronous motor benchmark study , 2011, 2011 IEEE Energy Conversion Congress and Exposition.

[20]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[21]  Leon F. McGinnis,et al.  Visual Analytics for Early-Phase Complex Engineered System Design Support , 2015, IEEE Computer Graphics and Applications.

[22]  Robert Spence,et al.  Visualisation for functional design , 1995, Proceedings of Visualization 1995 Conference.

[23]  Hanspeter Pfister,et al.  LineUp: Visual Analysis of Multi-Attribute Rankings , 2013, IEEE Transactions on Visualization and Computer Graphics.

[24]  Daniel Weiskopf,et al.  State of the Art of Parallel Coordinates , 2013, Eurographics.

[25]  Torsten Möller,et al.  TreePOD: Sensitivity-Aware Selection of Pareto-Optimal Decision Trees , 2018, IEEE Transactions on Visualization and Computer Graphics.

[26]  Helwig Hauser,et al.  Smooth Brushing for Focus+Context Visualization of Simulation Data in 3D , 2002, WSCG.

[27]  H. Piringer,et al.  Visual Analytics for Domain Experts: Challenges and Lessons Learned , 2017 .

[28]  Michael Sedlmair,et al.  Design Study Contributions Come in Different Guises: Seven Guiding Scenarios , 2016, BELIV '16.

[29]  Eduard Gröller,et al.  Cupid: Cluster-Based Exploration of Geometry Generators with Parallel Coordinates and Radial Trees , 2014, IEEE Transactions on Visualization and Computer Graphics.

[30]  Hans-Christian Hege,et al.  Tuner: Principled Parameter Finding for Image Segmentation Algorithms Using Visual Response Surface Exploration , 2011, IEEE Transactions on Visualization and Computer Graphics.

[31]  Gerd Bramerdorfer,et al.  Reducing Development Time of Electric Machines with SyMSpace , 2018, 2018 8th International Electric Drives Production Conference (EDPC).

[32]  Peter J. Fleming,et al.  Many-Objective Optimization: An Engineering Design Perspective , 2005, EMO.

[33]  Miguel J. Bagajewicz,et al.  Pareto Optimal Solutions Visualization Techniques for Multiobjective Design and Upgrade of Instrumentation Networks , 2003 .

[34]  Hong Zhou,et al.  Scattering Points in Parallel Coordinates , 2009, IEEE Transactions on Visualization and Computer Graphics.

[35]  Dik Lun Lee,et al.  SkyLens: Visual Analysis of Skyline on Multi-Dimensional Data , 2017, IEEE Transactions on Visualization and Computer Graphics.

[36]  Shigeru Obayashi,et al.  Multi-Objective Design Exploration for Aerodynamic Configurations , 2005 .

[37]  Camilla Forsell,et al.  Evaluation of Parallel Coordinates: Overview, Categorization and Guidelines for Future Research , 2016, IEEE Transactions on Visualization and Computer Graphics.

[38]  Jing Li,et al.  Judging Correlation from Scatterplots and Parallel Coordinate Plots , 2010, Inf. Vis..

[39]  Clifford A. Shaffer,et al.  VizCraft: a multidimensional visualization tool for aircraft configuration design , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[40]  Dimitri N. Mavris,et al.  An interactive visualization environment for decision making in aircraft engine preliminary design , 2007 .

[41]  Edwin Lughofer,et al.  A Hybrid Soft Computing Approach for Optimizing Design Parameters of Electrical Drives , 2012, SOCO.

[42]  Roy A. Ruddle,et al.  Visualization of Parameter Space for Image Analysis , 2011, IEEE Transactions on Visualization and Computer Graphics.

[43]  Torsten Möller,et al.  Decision making in uncertainty visualization , 2015 .

[44]  Torsten Möller,et al.  ParaGlide: Interactive Parameter Space Partitioning for Computer Simulations , 2011, IEEE Transactions on Visualization and Computer Graphics.

[45]  Kaisa Miettinen,et al.  Visualizing the Pareto Frontier , 2008, Multiobjective Optimization.

[46]  Marc Streit,et al.  WeightLifter: Visual Weight Space Exploration for Multi-Criteria Decision Making , 2017, IEEE Transactions on Visualization and Computer Graphics.

[47]  Jyrki Wallenius,et al.  Visualization in the Multiple Objective Decision-Making Framework , 2008, Multiobjective Optimization.

[48]  Peter Filzmoser,et al.  Uncertainty‐Aware Exploration of Continuous Parameter Spaces Using Multivariate Prediction , 2011, Comput. Graph. Forum.

[49]  Johannes Gerstmayr,et al.  Coupled optimization in MagOpt , 2016, J. Syst. Control. Eng..

[50]  Stefan Bruckner,et al.  Visual Parameter Space Analysis: A Conceptual Framework , 2014, IEEE Transactions on Visualization and Computer Graphics.

[51]  Pierre Dragicevic,et al.  Conceptual and Methodological Issues in Evaluating Multidimensional Visualizations for Decision Support , 2018, IEEE Transactions on Visualization and Computer Graphics.

[52]  Tamara Munzner,et al.  A Nested Model for Visualization Design and Validation , 2009, IEEE Transactions on Visualization and Computer Graphics.

[53]  MunznerTamara A Nested Model for Visualization Design and Validation , 2009 .

[54]  Tamara Munzner,et al.  Design Study Methodology: Reflections from the Trenches and the Stacks , 2012, IEEE Transactions on Visualization and Computer Graphics.

[55]  Gennady Andrienko,et al.  Constructing Parallel Coordinates Plot for Problem Solving , 2001 .

[56]  Layne T. Watson,et al.  Visualization for multiparameter aircraft designs , 1998 .

[57]  Timoleon Kipouros,et al.  Parallel coordinates in computational engineering design , 2013 .

[58]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[59]  Jason Dykes,et al.  Criteria for Rigor in Visualization Design Study , 2019, IEEE Transactions on Visualization and Computer Graphics.

[60]  Ofer M. Shir,et al.  Self-organizing maps for multi-objective pareto frontiers , 2013, 2013 IEEE Pacific Visualization Symposium (PacificVis).

[61]  Kwan-Liu Ma,et al.  Design Considerations for Optimizing Storyline Visualizations , 2012, IEEE Transactions on Visualization and Computer Graphics.