An Efficient Global Approach for Posynomial Geometric Programming Problems

Aposynomial geometric programming problem is composed of a posynomial being minimized in the objective function subject to posynomial constraints. This study proposes an efficient method to solve a posynomial geometric program with separable functions. Power transformations and exponential transformations are utilized to convexify and underestimate posynomial terms. The inverse transformation functions of decision variables generated in the convexification process are approximated by superior piecewise linear functions. The original program therefore can be converted into a convex mixed-integer nonlinear program solvable to obtain a global optimum. Several numerical experiments are presented to investigate the impact of different convexification strategies on the obtained approximate solution and to demonstrate the advantages of the proposed method in terms of both computational efficiency and solution quality.

[1]  Stephen P. Boyd,et al.  Optimal design of a CMOS op-amp via geometric programming , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[2]  Mordecai Avriel,et al.  Complementary Geometric Programming , 1970 .

[3]  C. Floudas,et al.  Global Optimization in Generalized Geometric Programming , 1997, Encyclopedia of Optimization.

[4]  Christodoulos A. Floudas,et al.  Convex underestimation for posynomial functions of positive variables , 2008, Optim. Lett..

[5]  X. M. Martens,et al.  Comparison of generalized geometric programming algorithms , 1978 .

[6]  T. Westerlund,et al.  Convexification of different classes of non-convex MINLP problems , 1999 .

[7]  Ron S. Dembo,et al.  Optimal design of a membrane separation process using signomial programming , 1978, Math. Program..

[8]  Tapio Westerlund,et al.  Convex underestimation strategies for signomial functions , 2009, Optim. Methods Softw..

[9]  J. C. Choi,et al.  Effectiveness of a geometric programming algorithm for optimization of machining economics models , 1996, Comput. Oper. Res..

[10]  Kaj-Mikael Björk,et al.  Global solution of optimization problems with signomial parts , 2008, Discret. Optim..

[11]  Tapio Westerlund,et al.  ON THE RELATIONSHIP BETWEEN POWER AND EXPONENTIAL TRANSFORMATIONS FOR POSITIVE SIGNOMIAL FUNCTIONS , 2009 .

[12]  Ron S. Dembo,et al.  A set of geometric programming test problems and their solutions , 1976, Math. Program..

[13]  Christodoulos A. Floudas,et al.  Convexity of Products of Univariate Functions and Convexification Transformations for Geometric Programming , 2008 .

[14]  C. Floudas Handbook of Test Problems in Local and Global Optimization , 1999 .

[15]  Christodoulos A. Floudas,et al.  A New Class of Improved Convex Underestimators for Twice Continuously Differentiable Constrained NLPs , 2004, J. Glob. Optim..

[16]  Tapio Westerlund Some Transformation Techniques in Global Optimization , 2006 .

[17]  Yinyu Ye,et al.  An infeasible interior-point algorithm for solving primal and dual geometric programs , 1997, Math. Program..

[18]  M. A. Hall,et al.  The analysis of an inventory control model using posynomial geometric programming , 1982 .

[19]  Peiping Shen,et al.  Global optimization of signomial geometric programming using linear relaxation , 2004, Appl. Math. Comput..

[20]  Georges G. E. Gielen,et al.  Simulation-based generation of posynomial performance models for the sizing of analog integrated circuits , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[21]  Won J. Lee Determining Order Quantity and Selling Price by Geometric Programming: Optimal Solution, Bounds, and Sensitivity* , 1993 .

[22]  Christodoulos A. Floudas,et al.  Trilinear Monomials with Positive or Negative Domains: Facets of the Convex and Concave Envelopes , 2004 .

[23]  Cerry M. Klein,et al.  Optimal inventory policies under decreasing cost functions via geometric programming , 2001, Eur. J. Oper. Res..

[24]  Jung-Fa Tsai,et al.  Global optimization for signomial discrete programming problems in engineering design , 2002 .

[25]  U. Passy,et al.  Generalized Weighted Mean Programming , 1971 .

[26]  Hanif D. Sherali,et al.  Global Optimization of Nonconvex Polynomial Programming Problems Having Rational Exponents , 1998, J. Glob. Optim..

[27]  Ching-Ter Chang,et al.  On the posynomial fractional programming problems , 2002, Eur. J. Oper. Res..

[28]  Nikolaos V. Sahinidis,et al.  Analysis of Bounds for Multilinear Functions , 2001, J. Glob. Optim..

[29]  Chia-Hui Huang,et al.  A Superior Representation Method for Piecewise Linear Functions , 2009, INFORMS J. Comput..

[30]  C. Floudas,et al.  Global optimization in the 21st century: Advances and challenges , 2005, Computers and Chemical Engineering.

[31]  C. Floudas,et al.  Quadratic Optimization , 1995 .

[32]  Christodoulos A. Floudas,et al.  Deterministic Global Optimization: Theory, Methods and (NONCONVEX OPTIMIZATION AND ITS APPLICATIONS Volume 37) (Nonconvex Optimization and Its Applications) , 2005 .

[33]  Han-Lin Li,et al.  Convex relaxation for solving posynomial programs , 2010, J. Glob. Optim..

[34]  Hanif D. Sherali,et al.  A reformulation-convexification approach for solving nonconvex quadratic programming problems , 1995, J. Glob. Optim..

[35]  Christodoulos A. Floudas,et al.  Trilinear Monomials with Mixed Sign Domains: Facets of the Convex and Concave Envelopes , 2004, J. Glob. Optim..

[36]  C. Scott,et al.  Allocation of resources in project management , 1995 .

[37]  D. Bricker,et al.  Investigation of path-following algorithms for signomial geometric programming problems , 1997 .

[38]  Joakim Westerlund,et al.  Some transformation techniques with applications in global optimization , 2009, J. Glob. Optim..

[39]  U. Passy,et al.  Generalized Polynomial Optimization , 1967 .

[40]  George L. Nemhauser,et al.  Modeling disjunctive constraints with a logarithmic number of binary variables and constraints , 2011, Math. Program..

[41]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.

[42]  Christodoulos A. Floudas,et al.  Trigonometric Convex Underestimator for the Base Functions in Fourier Space , 2005 .

[43]  C. Adjiman,et al.  Global optimization of mixed‐integer nonlinear problems , 2000 .

[44]  Richard James Duffin,et al.  Reversed Geometric Programs Treated by Harmonic Means , 1972 .

[45]  P. N. Rao,et al.  Optimal selection of process parameters for turning operations in a CAPP system , 1997 .

[46]  Christodoulos A. Floudas,et al.  Finding all solutions of nonlinearly constrained systems of equations , 1995, J. Glob. Optim..

[47]  Hanif D. Sherali,et al.  A global optimization algorithm for polynomial programming problems using a Reformulation-Linearization Technique , 1992, J. Glob. Optim..