Si photocathode with Ag-supported dendritic Cu catalyst for CO2reduction

Solar-driven photocathode converts carbon dioxide to C2and C3products.

[1]  T. Andreu,et al.  Tailoring Copper Foam with Silver Dendrite Catalysts for Highly Selective Carbon Dioxide Conversion into Carbon Monoxide. , 2018, ACS applied materials & interfaces.

[2]  Chao Wang,et al.  Local pH Effect in the CO2 Reduction Reaction on High-Surface-Area Copper Electrocatalysts , 2018 .

[3]  Genevieve Saur,et al.  What Should We Make with CO2 and How Can We Make It , 2018 .

[4]  J. Savéant,et al.  Catalysis of CO2 Electrochemical Reduction by Protonated Pyridine and Similar Molecules. Useful Lessons from a Methodological Misadventure , 2018 .

[5]  A. Priyadarshi,et al.  Spinel Co3O4 nanomaterials for efficient and stable large area carbon-based printed perovskite solar cells. , 2018, Nanoscale.

[6]  T. Andreu,et al.  A prototype reactor for highly selective solar-driven CO2 reduction to synthesis gas using nanosized earth-abundant catalysts and silicon photovoltaics , 2017 .

[7]  Xudong Yang,et al.  A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules , 2017, Nature.

[8]  A. Javey,et al.  Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates , 2017 .

[9]  J. Savéant,et al.  Catalysis and Inhibition in the Electrochemical Reduction of CO2 on Platinum in the Presence of Protonated Pyridine. New Insights into Mechanisms and Products. , 2017, Journal of the American Chemical Society.

[10]  Luo Gong,et al.  Continuous Production of Ethylene from Carbon Dioxide and Water Using Intermittent Sunlight , 2017 .

[11]  P. Hu,et al.  Perspective: Photocatalytic reduction of CO2 to solar fuels over semiconductors. , 2017, The Journal of chemical physics.

[12]  Soo‐Kil Kim,et al.  Electrodeposited Ag catalysts for the electrochemical reduction of CO2 to CO , 2017 .

[13]  A. Bell,et al.  Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO2 Reduction , 2017 .

[14]  Rohit Abraham John,et al.  Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water-Splitting Devices. , 2017, ChemSusChem.

[15]  Michael Grätzel,et al.  Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO , 2017, Nature Energy.

[16]  A. Steinfeld,et al.  Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency , 2017 .

[17]  James L. Young,et al.  Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting , 2017, Nature Energy.

[18]  D. Nocera Solar Fuels and Solar Chemicals Industry. , 2017, Accounts of chemical research.

[19]  V. Smirnov,et al.  A modular device for large area integrated photoelectrochemical water-splitting as a versatile tool to evaluate photoabsorbers and catalysts , 2017 .

[20]  Sung-Yoon Chung,et al.  Nanoporous Au Thin Films on Si Photoelectrodes for Selective and Efficient Photoelectrochemical CO2 Reduction , 2017 .

[21]  Frank E. Osterloh,et al.  Photocatalysis versus Photosynthesis: A Sensitivity Analysis of Devices for Solar Energy Conversion and Chemical Transformations , 2017 .

[22]  B. Yeo,et al.  Tuning the Selectivity of Carbon Dioxide Electroreduction toward Ethanol on Oxide-Derived CuxZn Catalysts , 2016 .

[23]  Michele Aresta,et al.  State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: The distinctive contribution of chemical catalysis and biotechnology , 2016 .

[24]  Chengxiang Xiang,et al.  Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices. , 2016, Angewandte Chemie.

[25]  A. Bell,et al.  Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu. , 2016, Journal of the American Chemical Society.

[26]  Sonja A. Francis,et al.  Solar-Driven Reduction of 1 atm of CO2 to Formate at 10% Energy-Conversion Efficiency by Use of a TiO2-Protected III–V Tandem Photoanode in Conjunction with a Bipolar Membrane and a Pd/C Cathode , 2016 .

[27]  Bugra Turan,et al.  Upscaling of integrated photoelectrochemical water-splitting devices to large areas , 2016, Nature Communications.

[28]  P. Yang,et al.  Directed Assembly of Nanoparticle Catalysts on Nanowire Photoelectrodes for Photoelectrochemical CO2 Reduction. , 2016, Nano letters.

[29]  Mohammad Asadi,et al.  Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid , 2016, Science.

[30]  Joshua M. Spurgeon,et al.  New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction , 2016 .

[31]  P. Strasser,et al.  Nanostructured electrocatalysts with tunable activity and selectivity , 2016 .

[32]  Frances A. Houle,et al.  Opportunities to improve the net energy performance of photoelectrochemical water-splitting technology , 2016 .

[33]  A. Javey,et al.  Efficient silicon solar cells with dopant-free asymmetric heterocontacts , 2016, Nature Energy.

[34]  J. Savéant,et al.  Attempts To Catalyze the Electrochemical CO2-to-Methanol Conversion by Biomimetic 2e(-) + 2H(+) Transferring Molecules. , 2016, Journal of the American Chemical Society.

[35]  A. Bell,et al.  Design of an artificial photosynthetic system for production of alcohols in high concentration from CO2 , 2016 .

[36]  K. Nam,et al.  Graphene Quantum Sheet Catalyzed Silicon Photocathode for Selective CO2 Conversion to CO , 2016 .

[37]  P. Hurley,et al.  Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes. , 2016, Nature materials.

[38]  Maor F. Baruch,et al.  Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. , 2015, Chemical reviews.

[39]  Yun Luo,et al.  Selective Catalytic Electroreduction of CO2 at Silicon Nanowires (SiNWs) Photocathodes Using Non-Noble Metal-Based Manganese Carbonyl Bipyridyl Molecular Catalysts in Solution and Grafted onto SiNWs , 2015 .

[40]  Shaohua Zhang,et al.  Enzymatic conversion of carbon dioxide. , 2015, Chemical Society reviews.

[41]  M. Ge,et al.  Artificial Photosynthesis on TiO2-Passivated InP Nanopillars. , 2015, Nano letters.

[42]  H. Jia,et al.  Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH. , 2015, Physical chemistry chemical physics : PCCP.

[43]  F. Toma,et al.  p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation. , 2015, Journal of the American Chemical Society.

[44]  Ki Tae Nam,et al.  Mn5O8 Nanoparticles as Efficient Water Oxidation Catalysts at Neutral pH , 2015 .

[45]  T. Morikawa,et al.  A monolithic device for CO2 photoreduction to generate liquid organic substances in a single-compartment reactor , 2015 .

[46]  Martin A. Green,et al.  Solar cell efficiency tables (version 46) , 2015 .

[47]  Antonio Abate,et al.  Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics , 2015, Nature Communications.

[48]  J. Barber,et al.  Perovskite-Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting. , 2015, Nano letters.

[49]  Matthew R. Shaner,et al.  Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting , 2015 .

[50]  Jai Hyun Koh,et al.  A monolithic and standalone solar-fuel device having comparable efficiency to photosynthesis in nature , 2015 .

[51]  Aldo Di Carlo,et al.  Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process , 2015 .

[52]  Kimberly M. Papadantonakis,et al.  A taxonomy for solar fuels generators , 2015 .

[53]  A. Cuevas,et al.  Charge Carrier Separation in Solar Cells , 2015, IEEE Journal of Photovoltaics.

[54]  Luca Boarino,et al.  Monolithic cells for solar fuels. , 2014, Chemical Society reviews.

[55]  Frances A. Houle,et al.  Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting , 2014 .

[56]  J. Savéant,et al.  Electrochemistry of acids on platinum. Application to the reduction of carbon dioxide in the presence of pyridinium ion in water. , 2013, Journal of the American Chemical Society.

[57]  Marika Edoff,et al.  A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency , 2013 .

[58]  Joel W. Ager,et al.  Net primary energy balance of a solar-driven photoelectrochemical water-splitting device , 2013 .

[59]  Jacek K. Stolarczyk,et al.  Photocatalytic reduction of CO2 on TiO2 and other semiconductors. , 2013, Angewandte Chemie.

[60]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[61]  Bhupendra Kumar,et al.  Photochemical and photoelectrochemical reduction of CO2. , 2012, Annual review of physical chemistry.

[62]  Daniel G Nocera,et al.  The artificial leaf. , 2012, Accounts of chemical research.

[63]  K. Lackner,et al.  Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy , 2011 .

[64]  C. Kubiak,et al.  Photoreduction of CO2 on p-type Silicon Using Re(bipy-But)(CO)3Cl: Photovoltages Exceeding 600 mV for the Selective Reduction of CO2 to CO , 2010 .

[65]  Jun-Ho Yum,et al.  Examining architectures of photoanode–photovoltaic tandem cells for solar water splitting , 2010 .

[66]  P. Würfel,et al.  Physics of solar cells : from basic principles to advanced concepts , 2009 .

[67]  D. Nocera Living healthy on a dying planet. , 2009, Chemical Society reviews.

[68]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+ , 2008, Science.

[69]  Andrew B. Bocarsly,et al.  Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. , 2008, Journal of the American Chemical Society.

[70]  M. Gattrell,et al.  Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions , 2006 .

[71]  J. Golbeck Photosystem I : the light-driven plastocyanin : ferredoxin oxidoreductase , 2006 .

[72]  K. Satoh,et al.  Photosystem II, the Light-Driven Water: Plastoquinone Oxidoreductase , 2005 .

[73]  Y. Nakato,et al.  An Approach to Ideal Semiconductor Electrodes for Efficient Photoelectrochemical Reduction of Carbon Dioxide by Modification with Small Metal Particles , 1998 .

[74]  Y. Nakato,et al.  Efficient Photoelectrochemical Reduction of Carbon Dioxide on a p-Type Silicon (p-Si) Electrode Modified with Very Small Copper Particles , 1994 .

[75]  Y. Hori,et al.  Product Selectivity Affected by Cationic Species in Electrochemical Reduction of CO2 and CO at a Cu Electrode , 1991 .

[76]  S. Morrison,et al.  Carbon dioxide reduction on gallium arsenide electrodes , 1985 .

[77]  B. Aurian‐Blajeni,et al.  Electrochemical measurement on the photoelectrochemical reduction of aqueous carbon dioxide on p-Gallium phosphide and p-Gallium arsenide semiconductor electrodes , 1983 .

[78]  M. Halmann,et al.  Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells , 1978, Nature.

[79]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[80]  B. Conway,et al.  Modern Aspects of Electrochemistry: No. 6 , 1968 .