Microplane triad model for simple and accurate prediction of orthotropic elastic constants of woven fabric composites

An accurate prediction of the orthotropic elastic constants of woven composites from the constituent properties can be achieved if the representative unit cell is subdivided into a large number of finite elements. But this would be prohibitive for microplane analysis of structures consisting of many representative unit cells when material damage alters the elastic constants in each time step in every element. This study shows that predictions almost as accurate and sufficient for practical purposes can be achieved in a much simpler and more efficient manner by adapting to woven composites the well-established microplane model, in a partly similar way as recently shown for braided composites. The undulating fill and warp yarns are subdivided into segments of different inclinations and, in the center of each segment, one microplane is placed normal to the yarn. As a new idea, a microplane triad is formed by adding two orthogonal microplanes parallel to the yarn, one of which is normal to the plane of the laminate. The benefit of the microplane approach is that it is easily extendable to damage and fracture. The model is shown to give realistic predictions of the full range of the orthotropic elastic constants for plain, twill, and satin weaves and is extendable to hybrid weaves and braids.

[1]  Byung H. Oh,et al.  Microplane Model for Progressive Fracture of Concrete and Rock , 1985 .

[2]  Ferhun C. Caner,et al.  Microplane model M7 for plain concrete. I: Formulation , 2013 .

[3]  Zdenek P. Bazant,et al.  Microplane Constitutive Model and Metal Plasticity , 2000 .

[4]  I. Dernikas,et al.  An attempt to separate elastic strain energy density of linear elastic anisotropic materials based on strains considerations , 2013 .

[5]  John W. Hutchinson,et al.  Dynamic Fracture Mechanics , 1990 .

[6]  Z. Bažant,et al.  Comminution of solids caused by kinetic energy of high shear strain rate, with implications for impact, shock, and shale fracturing , 2013, Proceedings of the National Academy of Sciences.

[7]  Hans W. Reinhardt,et al.  Tensile fracture of concrete at high loading rates taking account of inertia and crack velocity effects , 1991 .

[8]  D. E. Grady,et al.  Shock-wave compression of brittle solids , 1998 .

[9]  Donald R. Curran,et al.  Fragmentation of rock under dynamic loads , 1974 .

[10]  Norman A. Fleck,et al.  A binary model of textile composites—I. Formulation , 1994 .

[11]  Zdenek P. Bazant Author’s Reply to “Some comments on the paper ‘Microplane constitutive model and metal plasticity’ (Brocca M and Bažant ZP, 2000, Appl Mech Rev 53(10) 265–281),” by A Lagzdiņš and V Tamužs , 2002 .

[12]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[13]  Susanne Ebersbach,et al.  Engineering Mechanics Of Composite Materials , 2016 .

[14]  Isaac M Daniel,et al.  Microplane model for stiff foams and finite element analysis of sandwich failure by core indentation , 2001 .

[15]  Z. Aboura,et al.  Prediction of the elastic behaviour of hybrid and non-hybrid woven composites , 1998 .

[16]  A. Waas,et al.  Microplane Model for Fracturing Damage of Triaxially Braided Fiber-Polymer Composites , 2011 .

[17]  Venkatesh Agaram,et al.  Analysis of 2D triaxial flat braided textile composites , 2003 .

[18]  N. Mott,et al.  Fragmentation of shell cases , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[19]  Farouk Fardoun,et al.  Review and comparative study of analytical modeling for the elastic properties of textile composites , 2013 .

[20]  Z. Bažant,et al.  Spectral Stiffness Microplane Model for Quasibrittle Composite Laminates—Part I: Theory , 2008 .

[21]  T. Chou,et al.  Experimental Confirmation of the Theory of Elastic Moduli of Fabric Composites , 1985 .

[22]  Zdeněk P. Bažant,et al.  Impact comminution of solids due to local kinetic energy of high shear strain rate: I. Continuum theory and turbulence analogy , 2014 .

[23]  Ignace Verpoest,et al.  Textile composites: modelling strategies , 2000 .

[24]  Vikram Deshpande,et al.  The Dynamic Strength of a Representative Double Layer Prismatic Core: A Combined Experimental, Numerical, and Analytical Assessment , 2010 .

[25]  Z. Bažant,et al.  Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories , 1993 .

[26]  Milan Jirásek,et al.  Large-Strain Generalization of Microplane Model for Concrete and Application , 2000 .

[27]  Bhavani V. Sankar,et al.  A unit-cell model of textile composite beams for predicting stiffness properties , 1993 .

[28]  Dennis E. Grady,et al.  Particle size statistics in dynamic fragmentation , 1990 .

[29]  Y. C. Zhang,et al.  A numerical micromechanics analysis of the mechanical properties of a plain weave composite , 1990 .

[30]  Z. Bažant,et al.  Impact Comminution of Solids Due to Progressive Crack Growth Driven by Kinetic Energy of High-Rate Shear , 2015 .

[31]  Gilles Pijaudier-Cabot,et al.  Coupled damage and plasticity modelling in transient dynamic analysis of concrete , 2002 .

[32]  Z. Bažant,et al.  Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories , 2010 .

[33]  Dennis E. Grady,et al.  Local inertial effects in dynamic fragmentation , 1982 .

[34]  Ferhun C. Caner,et al.  Microplane Model M4 for Concrete. I: Formulation with Work-Conjugate Deviatoric Stress , 2000 .

[35]  Marcel Abendroth Mechanics Of Textile And Laminated Composites , 2016 .

[36]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[37]  Vikram Deshpande,et al.  Inelastic deformation and energy dissipation in ceramics: A mechanism-based constitutive model , 2008 .

[38]  N. K. Naik,et al.  Prediction of on-axes elastic properties of plain weave fabric composites , 1992 .

[39]  Tsu-Wei Chou,et al.  One-dimensional micromechanical analysis of woven fabric composites , 1983 .

[40]  Joško Ožbolt,et al.  Dynamic fracture of concrete – compact tension specimen , 2011 .

[41]  D. Grady,et al.  Experimental measurement of dynamic failure and fragmentation properties of metals , 1993 .

[42]  Ferhun C. Caner,et al.  Fracturing Rate Effect and Creep in Microplane Model for Dynamics , 2000 .

[43]  Grant P. Steven,et al.  Modelling for predicting the mechanical properties of textile composites : A review , 1997 .

[44]  M. E. Kipp,et al.  THE MICROMECHANICS OF IMPACT FRACTURE OF ROCK , 1979 .

[45]  M. Berra,et al.  Strain-rate effect on the tensile behaviour of concrete at different relative humidity levels , 2001 .

[46]  Ajit D. Kelkar,et al.  Classical laminate theory model for twill weave fabric composites , 2001 .

[47]  Z. Bažant,et al.  Spectral Stiffness Microplane Model for Quasibrittle Composite Laminates—Part II: Calibration and Validation , 2008 .

[48]  A. Dixit,et al.  Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: a Review , 2013, Mechanics of Composite Materials.

[49]  M. Meyers,et al.  High-strain-rate deformation and comminution of silicon carbide , 1998 .

[50]  H. Hahn,et al.  A Micromechanics Model for Thermoelastic Properties of Plain Weave Fabric Composites , 1994 .

[51]  Tsu-Wei Chou,et al.  Microstructural design of fiber composites , 1992 .

[52]  Donald M. Blackketter,et al.  Modeling Damage in a Plain Weave Fabric-Reinforced Composite Material , 1993 .

[53]  Tsu-Wei Chou,et al.  Stiffness and strength behaviour of woven fabric composites , 1982 .

[54]  Z. Hashin,et al.  The Elastic Moduli of Fiber-Reinforced Materials , 1964 .

[55]  V. Carvelli,et al.  A homogenization procedure for the numerical analysis of woven fabric composites , 2001 .