Virtual Yang-Baxter cocycle invariants
暂无分享,去创建一个
[1] Jacquelyn L. Rische,et al. On bilinear biquandles , 2007, 0708.1951.
[2] L. Kauffman,et al. BIQUANDLES FOR VIRTUAL KNOTS , 2007, math/0703216.
[3] Alissa S. Crans,et al. Cohomology of Categorical Self-Distributivity , 2006, math/0607417.
[4] J. Vo,et al. Matrices and finite biquandles , 2006, math/0601145.
[5] Sam Nelson,et al. Symbolic computation with finite biquandles , 2005, J. Symb. Comput..
[6] M. Saito,et al. SET-THEORETIC YANG–BAXTER SOLUTIONS VIA FOX CALCULUS , 2005, math/0503166.
[7] L. Kauffman,et al. Biquandles and virtual links , 2004 .
[8] L. Kauffman,et al. Virtual Biquandles , 2004, math/0411243.
[9] Nicholas Jackson. EXTENSIONS OF RACKS AND QUANDLES , 2004, math/0408040.
[10] M. Elhamdadi,et al. Homology theory for the set-theoretic Yang–Baxter equation and knot invariants from generalizations of quandles , 2002, math/0206255.
[11] Nicolas Andruskiewitsch,et al. From racks to pointed Hopf algebras , 2002, math/0202084.
[12] L. Kauffman,et al. Bi-oriented Quantum Algebras, and a Generalized Alexander Polynomial for Virtual Links , 2001, math/0112280.
[13] M. Elhamdadi,et al. Twisted quandle homology theory and cocycle knot invariants , 2001, math/0108051.
[14] S. Kamada,et al. ABSTRACT LINK DIAGRAMS AND VIRTUAL KNOTS , 2000 .
[15] Masahico Saito,et al. Quandle cohomology and state-sum invariants of knotted curves and surfaces , 1999, math/9903135.
[16] L. Kauffman. Virtual Knot Theory , 1998, Eur. J. Comb..