Current trends and future challenges of electrolytes for sodium-ion batteries

Research and development efforts on sodium-ion batteries are gaining momentum due to their potential to accommodate high energy density coupled with relatively lower cost in comparison with lithium-ion batteries. In order for the sodium-ion batteries to be commercially viable, high performance electrolytes with acceptable ambient temperature ionic conductivity and wider electrochemical stability windows are being developed. A bibliometric analysis of the publications on various types of Na+ ion conducting electrolytes since 1990 shows a total of 200 + publications and reveals an exponential growth in the last few years, due to reasons that the sodium-ion systems promise great potential as the future large scale power sources for variety of applications. This review consolidates the status of liquid (non-aqueous, aqueous and ionic), polymer gel and solid (ceramics, glasses, and solid polymers) electrolytes and discusses their ionic conductivity, thermal characteristics, electrochemical stability and viscosity towards applications in sodium-ion batteries. Among various types available, the non-aqueous solvent based electrolyte is the most promising one in terms of ionic conductivity even though it is flammable. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

[1]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[2]  Masahiro Tatsumisago,et al.  Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes , 2014 .

[3]  Wu Xu,et al.  Ionic liquids: Ion mobilities, glass temperatures, and fragilities , 2003 .

[4]  S. Hashmi,et al.  Ionic liquid based sodium ion conducting gel polymer electrolytes , 2010 .

[5]  A. Chandra,et al.  Na+ Ion Conducting Hot-pressed Nano Composite Polymer Electrolytes , 2012 .

[6]  J. Janek,et al.  Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na(0.7)CoO2. , 2014, Physical chemistry chemical physics : PCCP.

[7]  Z. Osman,et al.  A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes , 2010 .

[8]  A. Hayashi,et al.  High sodium ion conductivity of glass-ceramic electrolytes with cubic Na 3 PS 4 , 2014 .

[9]  A. K. Sharma,et al.  Investigations on electrical properties of (PVA:NaF) polymer electrolytes for electrochemical cell applications , 2009 .

[10]  S. Hashmi,et al.  Studies on poly(vinylidene fluoride-co-hexafluoropropylene) based gel electrolyte nanocomposite for sodium–sulfur batteries , 2011 .

[11]  J. Goodenough,et al.  A Composite Gel–Polymer/Glass–Fiber Electrolyte for Sodium‐Ion Batteries , 2015 .

[12]  F. H. Hurley,et al.  Electrodeposition of Metals from Fused Quaternary Ammonium Salts , 1951 .

[13]  B. Scrosati,et al.  Sodium-conducting ionic liquid-based electrolytes , 2014 .

[14]  H. Hong,et al.  Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆ , 1976 .

[15]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[16]  R. O. Fuentes,et al.  Submicrometric NASICON ceramics with improved electrical conductivity obtained from mechanically activated precursors , 2005 .

[17]  Zurina Zainal Abidin,et al.  Electrical Conduction Mechanism in Solid Polymer Electrolytes: New Concepts to Arrhenius Equation , 2013 .

[18]  N. B. Singh,et al.  Fast ion conducting phosphate glasses and glass ceramic composites: Promising materials for solid state batteries , 2012 .

[19]  R. Hagiwara,et al.  Na[FSA]-[C 3 C 1 pyrr][FSA] ionic liquids as electrolytes for sodium secondary batteries: Effects of Na ion concentration and operation temperature , 2014 .

[20]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[21]  M. Egashira,et al.  Ionic conductivity of ternary electrolyte containing sodium salt and ionic liquid , 2011 .

[22]  A. Arof,et al.  Polymer batteries with chitosan electrolyte mixed with sodium perchlorate , 1996 .

[23]  L. Shaw,et al.  Advances and challenges of sodium ion batteries as post lithium ion batteries , 2015 .

[24]  N. H. Zainol,et al.  Studies on Sodium Ion Conducting Gel Polymer Electrolytes , 2013 .

[25]  K. Shinozaki,et al.  Electrical conductivity of Na2O–Nb2O5–P2O5 glass and fabrication of glass–ceramic composites with NASICON type Na3Zr2Si2PO12 , 2015 .

[26]  Shan Jiang,et al.  Ionic conductivities of Na–Ge–P glass ceramics as solid electrolyte , 2015 .

[27]  D. Macfarlane,et al.  Gelled ionic liquid sodium ion conductors for sodium batteries , 2015 .

[28]  B. Hwang,et al.  Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries , 2015 .

[29]  S. Komornicki,et al.  Synthesis and properties of Nasicon-type materials , 2005 .

[30]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[31]  J. Whitacre,et al.  Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device , 2010 .

[32]  Jean-Marie Tarascon,et al.  In search of an optimized electrolyte for Na-ion batteries , 2012 .

[33]  A. K. Sharma,et al.  Structural, Electrical and Optical Characterization of Pure and Doped Poly (Vinyl Alcohol) (PVA) Polymer Electrolyte Films , 2007 .

[34]  Haibin Wang,et al.  Nafion membranes as electrolyte and separator for sodium-ion battery , 2014 .

[35]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[36]  Kehan Yu,et al.  A fluorophosphate glass–ceramic electrolyte with superior ionic conductivity and stability for Na-ion batteries , 2015 .

[37]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[38]  Chung‐Jen Tseng,et al.  Rechargeable Na/Na0.44MnO2 cells with ionic liquid electrolytes containing various sodium solutes , 2015 .

[39]  Shingo Matsumoto,et al.  Development of a Sodium Ion Secondary Battery , 2013 .

[40]  D. Butt,et al.  In Silico Based Rank-Order Determination and Experiments on Nonaqueous Electrolytes for Sodium Ion Battery Applications , 2014 .

[41]  Ruoyuan Tao,et al.  Application of mix-salts composed of lithium borate and lithium aluminate in PEO-based polymer electrolytes , 2005 .

[42]  H. Ahn,et al.  The short-term cycling properties of Na/PVdF/S battery at ambient temperature , 2008 .

[43]  Hui Wu,et al.  Exceptional Superionic Conductivity in Disordered Sodium Decahydro‐closo‐decaborate , 2014, Advanced materials.

[44]  Takayuki Komatsu,et al.  Fabrication of Na2FeP2O7 glass-ceramics for sodium ion battery , 2012 .

[45]  Bruno Scrosati,et al.  Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage. , 2014, Nano letters.

[46]  A. Hayashi,et al.  Structure and properties of the Na2S–P2S5 glasses and glass–ceramics prepared by mechanical milling , 2014 .

[47]  Jeng‐Kuei Chang,et al.  Ionic liquid electrolytes with various sodium solutes for rechargeable Na/NaFePO4 batteries operated at elevated temperatures. , 2014, ACS applied materials & interfaces.

[48]  K. Seddon,et al.  Influence of chloride, water, and organic solvents on the physical properties of ionic liquids , 2000 .

[49]  A. Hayashi,et al.  Preparation of sodium ion conducting Na3PS4–NaI glasses by a mechanochemical technique , 2015 .

[50]  Jay F. Whitacre,et al.  An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications , 2012 .

[51]  Zaiping Guo,et al.  3D Hierarchical Porous α‐Fe2O3 Nanosheets for High‐Performance Lithium‐Ion Batteries , 2015 .

[52]  Frank Tietz,et al.  Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries , 2015 .

[53]  S. Chandra,et al.  Experimental investigations on a sodium-ion-conducting polymer electrolyte based on poly(ethylene oxide) complexed with NaPF6 , 1995 .

[54]  Kazuhiko Matsumoto,et al.  Inorganic–Organic Hybrid Ionic Liquid Electrolytes for Na Secondary Batteries , 2015 .

[55]  Shigeto Okada,et al.  Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries , 2011 .

[56]  A. K. Sharma,et al.  Structural and electrical properties of pure and NaBr doped poly (vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications , 2007 .

[57]  Yuping Wu,et al.  A sodium ion conducting gel polymer electrolyte , 2015 .

[58]  T. Komatsu,et al.  Triclinic Na2−xFe1+x/2P2O7/C glass-ceramics with high current density performance for sodium ion battery , 2013 .

[59]  S. Sen,et al.  Fast Na-Ion Conduction in a Chalcogenide Glass–Ceramic in the Ternary System Na2Se–Ga2Se3–GeSe2 , 2014 .

[60]  Jou-Hyeon Ahn,et al.  Discharge properties of all-solid sodium–sulfur battery using poly (ethylene oxide) electrolyte , 2007 .

[61]  Rémi Dedryvère,et al.  Towards high energy density sodium ion batteries through electrolyte optimization , 2013 .

[62]  Xinping Ai,et al.  A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry , 2013 .

[63]  D. Macfarlane,et al.  Properties of sodium-based ionic liquid electrolytes for sodium secondary battery applications , 2013 .

[64]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[65]  H. Upadhyaya,et al.  Polyethylene oxide based sodium ion conducting composite polymer electrolytes dispersed with Na2SiO3 , 1999 .

[66]  S. Hashmi,et al.  Ion transport and ion–filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles , 2010 .

[67]  P. Johansson,et al.  Characterization of NaX (X: TFSI, FSI) – PEO based solid polymer electrolytes for sodium batteries , 2015 .

[68]  Xufeng Zhou,et al.  New-concept Batteries Based on Aqueous Li+/Na+ Mixed-ion Electrolytes , 2013, Scientific Reports.

[69]  Patrik Johansson,et al.  Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity , 2014 .

[70]  C. Chiappe,et al.  The effect of the anion on the physical properties of trihalide-based N,N-dialkylimidazolium ionic liquids. , 2005, Organic & biomolecular chemistry.

[71]  C. Angell,et al.  Parallel developments in aprotic and protic ionic liquids: physical chemistry and applications. , 2007, Accounts of chemical research.

[72]  K. R. Seddon,et al.  Applications of ionic liquids in the chemical industry. , 2008, Chemical Society reviews.

[73]  V. Viallet,et al.  An all-solid state NASICON sodium battery operating at 200 °C , 2014 .

[74]  Leigang Xue,et al.  Ionic Liquid Redox Catholyte for High Energy Efficiency, Low‐Cost Energy Storage , 2015 .

[75]  Xiongwei Wu,et al.  An aqueous rechargeable battery based on zinc anode and Na(0.95)MnO2. , 2014, Chemical communications.

[76]  Jeng‐Kuei Chang,et al.  Electrochemical performance of Na/NaFePO4 sodium-ion batteries with ionic liquid electrolytes , 2014 .

[77]  Shinji Inazawa,et al.  NaFSA–C1C3pyrFSA ionic liquids for sodium secondary battery operating over a wide temperature range , 2013 .

[78]  R. Hagiwara,et al.  Intermediate-temperature ionic liquid NaFSA-KFSA and its application to sodium secondary batteries , 2012 .