Supply Estimation Using Coevolutionary Genetic Algorithms in the Spanish Electrical Market

The price of electrical energy in Spain has not been regulated by the government since 1998, but determined by the supply from the generators in a competitive market, the so-called “electrical pool”. A genetic method for analyzing data from this new market is presented in this paper. The eventual objective is to determine the individual supply curves of the competitive agents. Adopting the point of view of the game theory, different genetic algorithm configurations using coevolutionary and non-coevolutionary strategies combined with scalar and multi-objective fitness are compared. The results obtained are the first step toward solving the induction of the optimal individual strategies into the Spanish electrical market from data in terms of perfect oligopolistic behavior.

[1]  John J. Grefenstette,et al.  A Coevolutionary Approach to Learning Sequential Decision Rules , 1995, ICGA.

[2]  D. Midgley,et al.  The Complexity of Competitive Marketing Strategies , 1998 .

[3]  Reiner Franke,et al.  Coevolution and stable adjustments in the cobweb model , 1998 .

[4]  W. Spears,et al.  On the Virtues of Parameterized Uniform Crossover , 1995 .

[5]  Tony Curzon Price,et al.  Using co-evolutionary programming to simulate strategic behaviour in markets , 1997 .

[6]  Von Wassily W. Leontief Verzögerte Angebotsanpassung und partielles Gleichgewicht , 1934 .

[7]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[8]  Jasmina Arifovic Genetic algorithm learning and the cobweb model , 1994 .

[9]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[10]  Augustin M. Cournot Cournot, Antoine Augustin: Recherches sur les principes mathématiques de la théorie des richesses , 2019, Die 100 wichtigsten Werke der Ökonomie.

[11]  Jan Paredis,et al.  Coevolutionary Computation , 1995, Artificial Life.

[12]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[13]  Robert E. Marks,et al.  Breeding hybrid strategies: optimal behaviour for oligopolists , 1989, ICGA.

[14]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[15]  Richard K. Belew,et al.  New Methods for Competitive Coevolution , 1997, Evolutionary Computation.

[16]  Herbert Dawid,et al.  Adaptive Learning by Genetic Algorithms, Analytical Results and Applications to Economic Models, 2nd extended and revised edition , 1999 .

[17]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[18]  C. Hwang,et al.  Fuzzy Multiple Objective Decision Making: Methods And Applications , 1996 .

[19]  Herbert Dawid,et al.  Adaptive Learning by Genetic Algorithms , 1996 .