Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO₂-Si-SiO₂-Cu nanoplasmonic waveguides.

We report systematic results on the development of horizontal Cu-SiO₂-Si-SiO₂-Cu nanoplasmonic waveguide components operating at 1550-nm telecom wavelengths, including straight waveguides, sharp 90° bends, power splitters, and Mach-Zehnder interferometers (MZIs). Owing to the relatively low loss for propagating (~0.3 dB/µm) and for 90° sharply bending (~0.73 dB/turn), various ultracompact power splitters and MZIs are experimentally realized on a silicon-on-insulator (SOI) platform using standard CMOS technology. The demonstrated splitters exhibit a relatively low excess loss and the MZIs exhibit good performance such as high extinction ratio of ~18 dB and low normalized insertion loss of ~1.7 dB. The experimental results of these devices agree well with those predicted from numerical simulations with suitable Cu permittivity data.

[1]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[2]  Shiyang Zhu,et al.  Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration. , 2011, Optics express.

[3]  G. Lo,et al.  Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators. , 2010, Optics express.

[4]  Rupert F. Oulton,et al.  Confinement and propagation characteristics of subwavelength plasmonic modes , 2008 .

[5]  Guo-Qiang Lo,et al.  Improved carrier injection in gate-all-around Schottky barrier silicon nanowire field-effect transistors , 2008 .

[6]  Jesper Jung,et al.  Scaling for gap plasmon based waveguides. , 2008, Optics express.

[7]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[8]  Shiyang Zhu,et al.  Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides , 2011 .

[9]  Shiyang Zhu,et al.  Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides. , 2009, Optics express.

[10]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[11]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[12]  Mircea Dragoman,et al.  Plasmonics: Applications to nanoscale terahertz and optical devices , 2008 .

[13]  Shanhui Fan,et al.  Elements for Plasmonic Nanocircuits with Three‐Dimensional Slot Waveguides , 2010, Advanced materials.

[14]  Mark L. Brongersma,et al.  Plasmonics: the next chip-scale technology , 2006 .

[15]  G. Lo,et al.  Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide. , 2011, Optics express.

[16]  G. Lo,et al.  Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide , 2011 .

[17]  G. Lo,et al.  Experimental Demonstration of Horizontal Nanoplasmonic Slot Waveguide-Ring Resonators With Submicrometer Radius , 2011, IEEE Photonics Technology Letters.

[18]  S. Roberts Optical Properties of Copper , 1960 .

[19]  G. Lo,et al.  Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits , 2011 .

[20]  Sergey I. Bozhevolnyi,et al.  Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides , 2007 .