Microelectromechanical deformable mirror development for high-contrast imaging, part 2: the impact of quantization errors on coronagraph image contrast
暂无分享,去创建一个
Dimitri Mawet | Byoung-Joon Seo | Eduardo Bendek | Garreth Ruane | Daniel Echeverri | Brian D. Kern | David Marx | Camilo Mejia Prada | A J Eldorado Riggs | Eugene Serabyn | Stuart Shaklan | D. Mawet | E. Serabyn | S. Shaklan | B. Kern | G. Ruane | D. Echeverri | A. Riggs | E. Bendek | Byoung-Joon Seo | C. Prada | D. Marx
[1] Amir Give'on. A unified formailism for high contrast imaging correction algorithms , 2009, Optical Engineering + Applications.
[2] Dimitri Mawet,et al. Vector vortex coronagraphy for exoplanet detection with spatially variant diffractive waveplates , 2019, Journal of the Optical Society of America B.
[3] Byoung-Joon Seo,et al. Decadal Survey Testbed Commissioning Roadmap: Demonstrating Technology for Imaging New Worlds , 2019 .
[4] Stuart B. Shaklan,et al. Fast linearized coronagraph optimizer (FALCO) I: a software toolbox for rapid coronagraphic design and wavefront correction , 2018, Astronomical Telescopes + Instrumentation.
[5] University of Arizona,et al. The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Interim Report , 2018, 1809.09674.
[6] Thomas G. Bifano,et al. Adaptive imaging: MEMS deformable mirrors , 2011 .
[7] R. Galicher,et al. Review of high-contrast imaging systems for current and future ground- and space-based telescopes I: coronagraph design methods and optical performance metrics , 2018, Astronomical Telescopes + Instrumentation.
[8] Fang Shi,et al. High-contrast imaging stability using MEMS deformable mirror , 2019, Optical Engineering + Applications.
[9] Mark A. Ealey,et al. High-density deformable mirrors to enable coronographic planet detection , 2004, SPIE Optics + Photonics.
[10] L. Pueyo,et al. Optimal dark hole generation via two deformable mirrors with stroke minimization. , 2009, Applied optics.
[11] Christopher B. Mendillo,et al. Microelectromechanical deformable mirror development for high-contrast imaging, part 1: miniaturized, flight-capable control electronics , 2020 .
[12] A. Lagrange. Direct imaging of exoplanets , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[13] Bertrand Mennesson,et al. Vortex coronagraphs for the Habitable Exoplanet Imaging Mission concept: theoretical performance and telescope requirements , 2018 .
[14] J. P. Laboratory,et al. High-Contrast Imaging from Space: Speckle Nulling in a Low-Aberration Regime , 2005, astro-ph/0510597.
[15] Olivier Guyon,et al. The Habitable Exoplanet Observatory mission concept , 2020, Astronomical Telescopes + Instrumentation.
[16] Theresa L. Bruno,et al. Deformable mirror technologies at AOA Xinetics , 2013, Europe Optics + Optoelectronics.
[17] John E. Krist,et al. Numerical modeling of the Habex coronagraph , 2019, Optical Engineering + Applications.
[18] Simon Thibault,et al. MEMS Deformable Mirrors for Space-Based High-Contrast Imaging , 2019, Micromachines.
[19] J. Yu. High Dynamic Range Imaging Using a Deformable Mirror for Space Coronography , 1995 .
[20] Brian Kern,et al. Methods and limitations of focal plane sensing, estimation, and control in high-contrast imaging , 2015 .
[21] W. Traub,et al. A laboratory demonstration of the capability to image an Earth-like extrasolar planet , 2007, Nature.
[22] D. Mawet,et al. Annular Groove Phase Mask Coronagraph , 2005 .
[23] G. Swartzlander,et al. Optical vortex coronagraph. , 2005, Optics letters.
[24] Amir Give'on,et al. Pair-wise, deformable mirror, image plane-based diversity electric field estimation for high contrast coronagraphy , 2011, Optical Engineering + Applications.