Implicit functions and sensitivity of stationary points

AbstractWe consider the spaceL(D) consisting of Lipschitz continuous mappings fromD to the Euclideann-space ℝn,D being an open bounded subset of ℝn. LetF belong toL(D) and suppose that $$\bar x$$ solves the equationF(x) = 0. In case that the generalized Jacobian ofF at $$\bar x$$ is nonsingular (in the sense of Clarke, 1983), we show that forG nearF (with respect to a natural norm) the systemG(x) = 0 has a unique solution, sayx(G), in a neighborhood of $$\bar x$$ Moreover, the mapping which sendsG tox(G) is shown to be Lipschitz continuous. The latter result is connected with the sensitivity of strongly stable stationary points in the sense of Kojima (1980); here, the linear independence constraint qualification is assumed to be satisfied.

[1]  Diane Valérie Ouellette Schur complements and statistics , 1981 .

[2]  Jan-J. Rückmann,et al.  On inertia and schur complement in optimization , 1987 .

[3]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[4]  C. Richter Ein implementierbares einbettungsverfahren der nichttinearen optimierang , 1984 .

[5]  Hubertus Th. Jongen,et al.  On Iterated Minimization in Nonconvex Optimization , 1986, Math. Oper. Res..

[6]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[7]  M. Kojima Strongly Stable Stationary Solutions in Nonlinear Programs. , 1980 .

[8]  Klaus Deimling,et al.  Nichtlineare Gleichungen und Abbildungsgrade , 1974 .

[9]  R. Kluge Deimling, K., Nichtlineare Gleichungen und Abbildungsgrade. Hochschultext. VIII, 131 Seiten. Berlin-Heidelberg-New York. Springer-Verlag 1974. Geheftet DM 16,80; US $ 6.90 . , 1977 .

[10]  S. M. Robinson Generalized equations and their solutions, part II: Applications to nonlinear programming , 1982 .

[11]  H. Fédérer Geometric Measure Theory , 1969 .

[12]  Ralph Lehmann On the numerical feasibility of continuation methods for nonlinear programming problems , 1984 .

[13]  W. Zulehner,et al.  ON IMBEDDING AND PARAMETRIC OPTIMIZATION-- A CONCEPT OF A GLOBALLY CONVERGENT ALGORITHM FOR NONLINEAR OPTIMIZATION PROBLEMS , 1984 .

[14]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .