On the convergence of local approximations to pseudodifferential operators with applications

We consider the approximation of a class pseudodifferential operators by sequences of operators which can be expressed as compositions of differential operators and their inverses. We show that the error in such approximations can be bounded in terms of L(1) error in approximating a convolution kernel, and use this fact to develop convergence results. Our main result is a finite time convergence analysis of the Engquist-Majda Pade approximants to the square root of the d'Alembertian. We also show that no spatially local approximation to this operator can be convergent uniformly in time. We propose some temporally local but spatially nonlocal operators with better long time behavior. These are based on Laguerre and exponential series.