Error Probability of Energy Detected Multilevel PAM Signals in Lognormal Multipath Fading Channels

Noncoherent multilevel systems have been typically analyzed with spectrally inefficient orthogonal modulation methods. In this paper, we present a novel error probability analysis of energy detected (ED) signals with spectrally efficient multilevel pulse amplitude modulation (PAM). One of the main challenges in the analysis of ED systems with the multilevel PAM is to find analytical methods to evaluate and optimize the performance of ED systems with respect to arbitrary system parameters, e.g., decision thresholds for chi-squared-distributed decision variables, integration time, bandwidth, and number of modulation levels. We propose analytically tractable methods that can be efficiently used to design spectrally efficient ED systems for short-range, wideband, and high data rate wireless communications in lognormal multipath fading channels with uncorrelated diversity paths.

[1]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[2]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[3]  Michel Daoud Yacoub,et al.  Highly accurate range-adaptive lognormal approximation to lognormal sum distributions , 2006 .

[4]  A. Mammela,et al.  Sensitivity of energy detected multilevel PAM systems to threshold mismatch , 2008, 2008 IEEE International Conference on Ultra-Wideband.

[5]  Mohamed-Slim Alouini,et al.  Digital Communication Over Fading Channels: A Unified Approach to Performance Analysis , 2000 .

[6]  Carl W. Helstrom,et al.  Computing the generalized Marcum Q-function , 1992, IEEE Trans. Inf. Theory.

[7]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[8]  H. Urkowitz Energy detection of unknown deterministic signals , 1967 .

[9]  Pierce E. Cantrell,et al.  Comparison of generalized Q- function algorithms , 1987, IEEE Trans. Inf. Theory.

[10]  Michel Daoud Yacoub,et al.  Simple accurate lognormal approximation to lognormal sums , 2005 .

[11]  Vladimir I. Kostylev,et al.  Energy detection of a signal with random amplitude , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[12]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[13]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[14]  D. Marcuse Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers , 1990 .

[15]  P. Humblet,et al.  On the bit error rate of lightwave systems with optical amplifiers , 1991 .

[16]  Arafat J. Al-Dweik,et al.  Frequency-hopped multiple-access communications with noncoherent M-ary OFDM-ASK , 2003, IEEE Trans. Commun..

[17]  N. Avlonitis,et al.  Multilevel amplitude shift keying in dispersion uncompensated optical systems , 2006 .

[18]  B. Uguen,et al.  An impulse radio asynchronous transceiver for high data rates , 2004, 2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies. Joint UWBST & IWUWBS 2004 (IEEE Cat. No.04EX812).

[19]  Yong Liang Guan,et al.  Thresholdless energy detection for ultra-wideband block-coded OOK signals , 2008 .

[20]  M. Schwartz,et al.  Communication Systems and Techniques , 1996, IEEE Communications Magazine.

[21]  Andreas F. Molisch,et al.  Channel models for ultrawideband personal area networks , 2003, IEEE Wireless Communications.

[22]  Ismail Güvenç,et al.  Joint Parameter Estimation for UWB Energy Detectors Using OOK , 2007, Wirel. Pers. Commun..

[23]  John G. Proakis,et al.  Digital Communications , 1983 .

[24]  Arafat J. Al-Dweik,et al.  Error-Rate Analysis of FHSS Networks Using Exact Envelope Characteristic Functions of Sums of Stochastic Signals , 2008, IEEE Transactions on Vehicular Technology.