Complete Structure Comparison

When it comes to the judgment of expertise, we often rely on assumptions which propose that expert knowledge is structured differently than novice knowledge. However, regardless of how much descriptive plausibility there might be in single cases, hypotheses like this cannot be investigated across domains unless there is a way to subtract the content from the structure which allows testing for structure only. A new algorithm introduced in this chapter is designed to solve this problem. The algorithm works for small and medium graphs, is capable of completely mapping the structure of an undirected graph, and also allows one to compare full structure sets between pairs of graphs. In my discussion of this algorithm, I derive additional computing-efficient graph feature-based heuristics from the original algorithm and compare the two in order to show how large graphs can be analyzed in a similar way. I then present standard applications of the algorithm from empirical studies on different kinds of expertise. Finally, I provide examples and a guideline in which the application and the interpretation of the structure comparison measure are discussed with a focus on research practice.

[1]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[2]  R. Montague Formal philosophy; selected papers of Richard Montague , 1974 .

[3]  P. Preece,et al.  Mapping Cognitive Structure: A Comparison of Methods. , 1976 .

[4]  A. Tversky Features of Similarity , 1977 .

[5]  Edward Maynard Glaser,et al.  Putting knowledge to use : facilitating the diffusion of knowledge and the implementation of planned change , 1983 .

[6]  P. Johnson-Laird Mental models , 1989 .

[7]  Roger W. Schvaneveldt,et al.  Measuring the Structure of Expertise , 1985, Int. J. Man Mach. Stud..

[8]  Brian Falkenhainer,et al.  The Structure-Mapping Engine: Algorithm and Examples , 1989, Artif. Intell..

[9]  D. Halpern Enhancing Thinking Skills in the Sciences and Mathematics. , 1992 .

[10]  David H. Jonassen,et al.  Structural Knowledge: Techniques for Representing, Conveying, and Acquiring Structural Knowledge , 1993 .

[11]  J. Sandberg,et al.  The think aloud method , 1994 .

[12]  Maarten van Someren,et al.  The Think Aloud Method: A Practical Guide to Modelling Cognitive Processes , 1994 .

[13]  Kenneth D. Forbus,et al.  MAC/FAC: A Model of Similarity-Based Retrieval , 1995, Cogn. Sci..

[14]  Arthur B. Markman,et al.  Analogy just looks like high level perception: why a domain-general approach to analogical mapping is right , 1998, J. Exp. Theor. Artif. Intell..

[15]  Helmut Felix Friedrich,et al.  Kognition und Wissensdiagnose : Die Entwicklung und empirische Überprüfung des computerunterstützten wissensdiagnostischen Instrumentariums "Netzwerk-Elaborierungs-Technik (NET)" , 1999 .

[16]  N. Seel,et al.  Mental Models & Instructional Planning , 2000 .

[17]  J. Michael Spector,et al.  Integrated and Holistic Perspectives on Learning, Instruction and Technology , 2000 .

[18]  T. Gilovich,et al.  Heuristics and Biases: Introduction – Heuristics and Biases: Then and Now , 2002 .

[19]  D. Kahneman,et al.  Heuristics and Biases: The Psychology of Intuitive Judgment , 2002 .

[20]  Tate T. Kubose,et al.  The role of textual coherence in incremental analogical mapping , 2002 .

[21]  J. Novak,et al.  Concept maps: theory, methodology, technology : proceedings of the first International Conference on Concept Mapping , 2004 .

[22]  Gloria Gomez,et al.  CmapTools: A Knowledge Modeling and Sharing Environment , 2004 .

[23]  Emden R. Gansner,et al.  Graphviz and Dynagraph – Static and Dynamic Graph Drawing Tools , 2003 .

[24]  Judit Bar-Ilan,et al.  Data collection methods on the Web for infometric purposes — A review and analysis , 2004, Scientometrics.

[25]  Arthur B. Markman,et al.  Defining structural similarity , 2005 .

[26]  Dirk Ifenthaler,et al.  Diagnose lernabhängiger Veränderung mentaler Modelle : Entwicklung der SMD-Technologie als methodologisches Verfahren zur relationalen, strukturellen und semantischen Analyse individueller Modellkonstruktionen , 2006 .

[27]  Hermann Helbig,et al.  Knowledge Representation and the Semantics of Natural Language , 2005, Cognitive Technologies.

[28]  Paul M. B. Vitányi,et al.  The Google Similarity Distance , 2004, IEEE Transactions on Knowledge and Data Engineering.

[29]  R. Jackendoff Linguistics in Cognitive Science: The state of the art , 2007 .

[30]  Dirk Ifenthaler,et al.  Relational, structural, and semantic analysis of graphical representations and concept maps , 2010 .

[31]  Dirk Ifenthaler,et al.  Understanding models for learning and instruction , 2008 .

[32]  J. Michael Spector,et al.  Highly integrated model assessment technology and tools , 2010, CELDA 2008.

[33]  Pablo Pirnay-Dummer,et al.  Rendezvous with a Quantum of Learning , 2008 .

[34]  Ronald W. Langacker,et al.  Cognitive Grammar: A Basic Introduction , 2008 .

[35]  Dedre Gentner,et al.  Metaphor as structure-mapping , 2008 .

[36]  R. Gibbs The Cambridge Handbook of Metaphor and Thought , 2008 .

[37]  J. Taylor,et al.  Cognitive Linguistics and Autonomous Linguistics , 2010 .