Physics of E × B discharges relevant to plasma propulsion and similar technologies

This paper provides perspectives on recent progress in understanding the physics of devices in which the external magnetic field is applied perpendicular to the discharge current. This configuration generates a strong electric field that acts to accelerate ions. The many applications of this set up include generation of thrust for spacecraft propulsion and separation of species in plasma mass separation devices. These “E  × B” plasmas are subject to plasma–wall interaction effects and to various micro- and macroinstabilities. In many devices we also observe the emergence of anomalous transport. This perspective presents the current understanding of the physics of these phenomena and state-of-the-art computational results, identifies critical questions, and suggests directions for future research.

[1]  W. Bleakney,et al.  A New Mass Spectrometer with Improved Focusing Properties , 1938 .

[2]  H. Alfvén COLLISION BETWEEN A NONIONIZED GAS AND A MAGNETIZED PLASMA , 1960 .

[3]  O. Buneman Instability of electrons drifting through ions across a magnetic field , 1962 .

[4]  A. Simon Instability of a Partially Ionized Plasma in Crossed Electric and Magnetic Fields , 1963 .

[5]  F. C. Hoh Instability of Penning‐Type Discharges , 1963 .

[6]  J. Kerrebrock,et al.  Nonequilibrium ionization due to electron heating - ii - experiments , 1964 .

[7]  A. Morozov FOCUSING COLD QUASINEUTRAL BEAMS IN ELECTROMAGNETIC FIELDS , 1965 .

[8]  J. G. Laframboise Theory of spherical and cylindrical Langmuir probes in a collisionless , 1966 .

[9]  Francis F. Chen,et al.  Microinstability and Shear Stabilization of a Low‐β, Rotating, Resistive Plasma , 1966 .

[10]  K. Thomassen Turbulent Diffusion in a Penning‐Type Discharge , 1966 .

[11]  G. Janes,et al.  Anomalous Electron Diffusion and Ion Acceleration in a Low‐Density Plasma , 1966 .

[12]  C. T. Dum,et al.  SATURATION OF NONLINEAR EXPLOSIVE INSTABILITIES. , 1969 .

[13]  S. A. Andersen,et al.  Continuous Supersonic Plasma Wind Tunnel , 1969 .

[14]  S. Gary,et al.  Longitudinal waves in a perpendicular collisionless plasma shock: I. Cold ions , 1970, Journal of Plasma Physics.

[15]  B. Lehnert The Partially Ionized Plasma Centrifuge , 1970 .

[16]  R. Morse,et al.  ELECTRON CYCLOTRON DRIFT INSTABILITY. , 1970 .

[17]  R. Chodura,et al.  Computer Simulation of Anomalous Resistance , 1971 .

[18]  S. Gary,et al.  Instabilities in perpendicular collisionless shock waves , 1971 .

[19]  A. Morozov,et al.  EFFECT OF THE MAGNETIC FIELD ON A CLOSED-ELECTRON-DRIFT ACCELERATOR. , 1972 .

[20]  R. Morse,et al.  On Anomalous Resistance due to Cross‐Field Electron‐Ion Streaming Instabilities , 1972 .

[21]  W. Manheimer,et al.  Theory and simulation of the beam cyclotron instability. , 1972 .

[22]  J. Fu,et al.  Electron Cyclotron Drift Instability and Turbulence , 1972 .

[23]  R. Chodura,et al.  On the non-linear electron-cyclotron drift instability , 1972 .

[24]  A. Morozov,et al.  Azimuthally asymmetric modes and anomalous conductivity in closed electron drift accelerators , 1973 .

[25]  R. Chodura,et al.  Collisionless dissipation of a cross-field electric current , 1973 .

[26]  A. Morozov,et al.  Plasma oscillations in closed-drift accelerators with an extended acceleration zone , 1974 .

[27]  Y. Esipchuk,et al.  Drift instability in a Hall-current plasma accelerator , 1976 .

[28]  Charles F. F. Karney Stochastic Ion Heating by a Lower Hybrid Wave: II , 1978, physics/0501034.

[29]  A. Langdon Kinetic theory for fluctuations and noise in computer simulation of plasma , 1979 .

[30]  E. Möbius,et al.  The influence of the plasma inhomogeneity on the critical velocity phenomenon , 1980 .

[31]  G. Malescio Analytic solution of the two‐dimensional Fokker–Planck equation governing stochastic ion heating by a lower‐hybrid wave , 1982 .

[32]  V. K. Kharchevnikov,et al.  Mechanism shaping the electron distribution function in a Hall accelerator , 1983 .

[33]  A. Akcasu,et al.  Effects of random fluctuations in external magnetic field on plasma conductivity , 1983 .

[34]  E. Lindman Numerical simulation of ion acoustic turbulence , 1985 .

[35]  S. Robertson Collective focusing of a charge-neutral ion beam with warm electrons , 1986 .

[36]  J. Moschella,et al.  Collective focusing of an intense pulsed ion beam , 1987 .

[37]  Doughty,et al.  Laser optogalvanic and fluorescence studies of the cathode region of a glow discharge. , 1988, Physical review. A, General physics.

[38]  Stenzel Instability of the sheath-plasma resonance. , 1988, Physical review letters.

[39]  Perkins,et al.  Fluid moment models for Landau damping with application to the ion-temperature-gradient instability. , 1990, Physical review letters.

[40]  M. Grossman,et al.  Plasma isotope separation methods , 1991 .

[41]  Egorov,et al.  Measurement of plasma parameters in the stationary plasma thruster(SPT-100) plume and its effect on spacecraft components. , 1992 .

[42]  Chen,et al.  Nonlinear evolution of the modified Simon-Hoh instability via a cascade of sideband instabilities in a weak beam plasma system. , 1992, Physical review letters.

[43]  Francis F. Chen,et al.  Excitation of the modified Simon–Hoh instability in an electron beam produced plasma , 1993 .

[44]  A. Sasoh SIMPLE FORMULATION OF MAGNETOPLASMADYNAMIC ACCELERATION , 1994 .

[45]  M. Surendra Radiofrequency discharge benchmark model comparison , 1995 .

[46]  V. Rozhansky,et al.  Fast expansion of a plasma beam controlled by short-circuiting effects in a longitudinal magnetic field , 1996 .

[47]  W. Rozmus,et al.  Nonlocal electron transport in laser heated plasmas , 1998 .

[48]  Patrick J. Roache,et al.  Verification and Validation in Computational Science and Engineering , 1998 .

[49]  L. Garrigues,et al.  Low frequency oscillations in a stationary plasma thruster , 1998 .

[50]  A. Sasoh,et al.  Technology and Application Aspects of Applied Field Magnetoplasmadynamic Propulsion , 1998 .

[51]  N. Hershkowitz,et al.  MULTIPLE ELECTRON BEAMS GENERATED BY A HELICON PLASMA DISCHARGE , 1998 .

[52]  R. Moses,et al.  Magnetohydrodynamic flow physics of magnetically nozzled plasma accelerators with applications to advanced manufacturing , 1998 .

[53]  John Michael Fife,et al.  Hybrid-PIC modeling and electrostatic probe survey of Hall thrusters , 1998 .

[54]  R. S. Robinson,et al.  Physics of closed drift thrusters , 1999 .

[55]  J. Schneider,et al.  A novel pulsed magnetron sputter technique utilizing very high target power densities , 1999 .

[56]  W. Horton Drift waves and transport , 1999 .

[57]  M. Brake,et al.  The Gaseous Electronic Conference (GEC) reference cell as a benchmark for understanding microelectronics processing plasmas , 1999 .

[58]  Charlson C. Kim,et al.  Comparisons and physics basis of tokamak transport models and turbulence simulations , 2000 .

[59]  T. V. D. Straaten,et al.  Transverse electric field and density gradient induced instabilities in a cylindrical magnetron discharge , 2000 .

[60]  Kaganovich,et al.  Electron boltzmann kinetic equation averaged over fast electron bouncing and pitch-angle scattering for fast modeling of electron cyclotron resonance discharge , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[61]  A. Morozov,et al.  Fundamentals of Stationary Plasma Thruster Theory , 2000 .

[62]  N. Fisch,et al.  Variational Principle for Optimal Accelerated Neutralized Flow , 2000 .

[63]  A. Morozov,et al.  One-dimensional hydrodynamic model of the atom and ion dynamics in a stationary plasma thruster , 2000 .

[64]  N. Fisch,et al.  Resistive instabilities in Hall current plasma discharge , 2000 .

[65]  E. Choueiri Plasma oscillations in Hall thrusters , 2001 .

[66]  N. Fisch,et al.  Variational Principle for Optimal Accelerated Neutralized Flow , 2001 .

[67]  Kevin J. Bowers,et al.  Accelerating a paricle -in-cell simulation using a hybrid counting sort , 2001 .

[68]  N. Fisch,et al.  Control of the electric-field profile in the Hall thruster , 2001 .

[69]  M. Cappelli,et al.  Laser-induced fluorescence measurements of velocity within a Hall discharge , 2001 .

[70]  N. Fisch,et al.  Parametric investigations of a nonconventional Hall thruster , 2001 .

[71]  N. Meezan,et al.  A characterization of plasma fluctuations within a Hall discharge , 2001 .

[72]  L. Garrigues,et al.  Two-dimensional model of a stationary plasma thruster , 2002 .

[73]  N. Fisch,et al.  Plasma Characterization of Hall Thruster with Active and Passive Segmented Electrodes , 2002 .

[74]  R. Miller,et al.  Band gap ion mass filter , 2002 .

[75]  Timothy G. Trucano,et al.  Verification and Validation in Computational Fluid Dynamics , 2002 .

[76]  K. Makowski,et al.  Wall material effects in stationary plasma thrusters. II. Near-wall and in-wall conductivity , 2003 .

[77]  N. Fisch,et al.  Secondary electron emission from dielectric materials of a Hall thruster with segmented electrodes , 2003 .

[78]  C. Charles,et al.  A supersonic ion beam generated by a current-free helicon double-layer , 2003 .

[79]  M. Dudeck,et al.  Wall material effects in stationary plasma thrusters. I. Parametric studies of an SPT-100 , 2003 .

[80]  J. Ramos Dynamic evolution of the heat fluxes in a collisionless magnetized plasma , 2003 .

[81]  A. Morozov The conceptual development of stationary plasma thrusters , 2003 .

[82]  E. Ahedo,et al.  Effects of the radial plasma-wall interaction on the Hall thruster discharge , 2003 .

[83]  T. Trucano,et al.  Verification, Validation, and Predictive Capability in Computational Engineering and Physics , 2004 .

[84]  N. Fisch,et al.  Experimental studies of high-frequency azimuthal waves in Hall thrusters , 2004 .

[85]  J. Adam,et al.  Study of stationary plasma thrusters using two-dimensional fully kinetic simulations , 2004 .

[86]  I. Mikellides,et al.  Hollow cathode theory and experiment. II. A two-dimensional theoretical model of the emitter region , 2005 .

[87]  M. Keidar,et al.  A Hydrodynamic-Based Erosion Model for Hall Thrusters , 2005 .

[88]  F. Rogier,et al.  Numerical investigation and modeling of stationary plasma thruster low frequency oscillations , 2005 .

[89]  V. Vial,et al.  Experimental investigation of high-frequency drifting perturbations in Hall thrusters , 2005 .

[90]  E. Ahedo,et al.  Partial trapping of secondary-electron emission in a Hall thruster plasma , 2005 .

[91]  K. Komurasaki,et al.  Discharge Current Oscillation in Hall Thrusters , 2005 .

[92]  A. Morozov,et al.  Axisymmetric plasma-optic mass separators , 2005 .

[93]  M. Cappelli,et al.  Comparison of hybrid Hall thruster model to experimental measurements , 2006 .

[94]  L. Garrigues,et al.  Anomalous conductivity and secondary electron emission in Hall effect thrusters , 2006 .

[95]  M. Turner Kinetic properties of particle-in-cell simulations compromised by {M}onte {C}arlo collisions , 2006 .

[96]  N. Fisch,et al.  Experimental and theoretical studies of cylindrical Hall thrustersa) , 2006 .

[97]  A. Smolyakov,et al.  Kinetic effects in a Hall thruster discharge , 2006 .

[98]  Rôles des instabilités électroniques de dérive dans le transport électronique du propulseur à effet hall , 2006 .

[99]  A. Smolyakov,et al.  Kinetic simulation of secondary electron emission effects in Hall thrusters , 2006 .

[100]  E. Ahedo,et al.  A two-dimensional hybrid model of the Hall thruster discharge , 2006 .

[101]  J. Adam,et al.  High-frequency electron drift instability in the cross-field configuration of Hall thrusters , 2006 .

[102]  H. Qin,et al.  Multispecies Weibel instability for intense charged particle beam propagation through neutralizing background plasma , 2007 .

[103]  N. Fisch,et al.  Enhanced performance of cylindrical Hall thrusters , 2007 .

[104]  E. Ahedo,et al.  Simulation of wall erosion in Hall thrusters , 2007 .

[105]  Günter Dr. Kornfeld,et al.  Physics and Evolution of HEMP-Thrusters , 2007 .

[106]  G. Hagelaar Modelling electron transport in magnetized low-temperature discharge plasmas , 2007 .

[107]  M. Cappelli,et al.  Simulating Plasma-Induced Hall Thruster Wall Erosion With a Two-Dimensional Hybrid Model , 2007, IEEE Transactions on Plasma Science.

[108]  E. Ahedo,et al.  Combined effects of electron partial thermalization and secondary emission in Hall thruster discharges , 2007 .

[109]  Effects of non-Maxwellian electron velocity distribution function on two-stream instability in low-pressure discharges , 2007 .

[110]  I. Brown,et al.  Plasma Devices Based on the Plasma Lens—A Review of Results and Applications , 2007, IEEE Transactions on Plasma Science.

[111]  A. Arefiev,et al.  Magnetic nozzle and plasma detachment model for a steady-state flow , 2008 .

[112]  I. Mikellides,et al.  Wear Mechanisms in Electron Sources for Ion Propulsion, 2: Discharge Hollow Cathode , 2008 .

[113]  M. Cappelli,et al.  Growth of resistive instabilities in E×B plasma discharge simulations , 2008 .

[114]  Timothy G. Trucano,et al.  Verification and validation benchmarks , 2008 .

[115]  V. Rozhansky Mechanisma of Transverse Conductivity and Generation of Self-Consistent Electric Fields in Strongly Ionized Magnetized Plasma , 2008 .

[116]  C. Charles,et al.  Spatial evolution of an ion beam created by a geometrically expanding low-pressure argon plasma , 2008 .

[117]  A. Sefkow,et al.  Controlling charge and current neutralization of an ion beam pulse in a background plasma by application of a solenoidal magnetic field: Weak magnetic field limit , 2008 .

[118]  R. Schneider,et al.  Kinetic simulations of a plasma thruster , 2008 .

[119]  A. Smolyakov,et al.  Plasma-sheath instability in Hall thrusters due to periodic modulation of the energy of secondary electrons in cyclotron motion , 2008 .

[120]  M. Keidar,et al.  Sheath and boundary conditions for plasma simulations of a Hall thruster discharge with magnetic lenses , 2009 .

[121]  V. Demidov,et al.  Non-local collisionless and collisional electron transport in low-temperature plasma , 2009 .

[122]  R. Schneider,et al.  Anomalous transport induced by sheath instability in Hall effect thrusters , 2009 .

[123]  A. Smolyakov,et al.  Breakdown of a space charge limited regime of a sheath in a weakly collisional plasma bounded by walls with secondary electron emission. , 2009, Physical review letters.

[124]  N. Fisch,et al.  Effects of enhanced cathode electron emission on Hall thruster operation , 2009 .

[125]  E. Ahedo,et al.  Low-frequency model of breathing oscillations in Hall discharges. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[126]  S. Tsikata,et al.  Dispersion relations of electron density fluctuations in a Hall thruster plasma, observed by collective light scattering , 2009 .

[127]  S. Tsikata SMALL-SCALE ELECTRON DENSITY FLUCTUATIONS IN THE HALL THRUSTER, INVESTIGATED BY COLLECTIVE LIGHT SCATTERING , 2009 .

[128]  A. Fruchtman,et al.  Experimental study of a radial plasma source , 2009 .

[129]  R. Davidson,et al.  Enhanced self-focusing of an ion beam pulse propagating through a background plasma along a solenoidal magnetic field. , 2009, Physical review letters.

[130]  C. Deline,et al.  Plume detachment from a magnetic nozzle , 2009 .

[131]  T. Pierre,et al.  Direct observation of a cross-field current-carrying plasma rotating around an unstable magnetized plasma column , 2008, 0810.2077.

[132]  M. Belhaj,et al.  A Kelvin probe based method for measuring the electron emission yield of insulators and insulated conductors subjected to electron irradiation , 2009 .

[133]  B. Rogers,et al.  Low-frequency turbulence in a linear magnetized plasma. , 2010, Physical review letters.

[134]  R. Davidson,et al.  Whistler wave excitation and effects of self-focusing on ion beam propagation through a background plasma along a solenoidal magnetic field , 2010 .

[135]  A. Mathers,et al.  Demonstration of 10,400 Hours of Operation on a 4.5 kW Qualification Model Hall Thruster , 2010 .

[136]  V. Bardakov,et al.  Mass separation of ions in a circular plasma flow , 2010 .

[137]  N. Fisch,et al.  Transition in Electron Transport in a Cylindrical Hall Thruster , 2010 .

[138]  M. Merino,et al.  Two-dimensional supersonic plasma acceleration in a magnetic nozzle , 2010 .

[139]  S. Tsikata,et al.  Three-dimensional structure of electron density fluctuations in the Hall thruster plasma: E¯×B¯ mode , 2010 .

[140]  P. Mikellides,et al.  Three-dimensional modeling of magnetic nozzle processes , 2010 .

[141]  S. Mazouffre,et al.  Spatio-temporal characteristics of ion velocity in a Hall thruster discharge , 2010 .

[142]  N. Fisch,et al.  Cylindrical Hall Thrusters with Permanent Magnets , 2010 .

[143]  S. Barral,et al.  Ionization oscillations in Hall accelerators , 2010 .

[144]  M. Greenwald Verification and validation for magnetic fusiona) , 2010 .

[145]  T. Pierre,et al.  Ion velocity distribution function investigated inside an unstable magnetized plasma exhibiting a rotating nonlinear structure. , 2011, Physical review letters.

[146]  I. Mikellides,et al.  Magnetic Shielding of the Channel Walls in a Hall Plasma Accelerator , 2011 .

[147]  N. Fisch,et al.  The magnetic centrifugal mass filter , 2011 .

[148]  C. Charles,et al.  Electron diamagnetic effect on axial force in an expanding plasma: experiments and theory. , 2011, Physical review letters.

[149]  R. Schneider,et al.  The HEMPT Concept - A Survey on Theoretical Considerations and Experimental Evidences , 2011 .

[150]  C. Charles,et al.  Performance characterization of a helicon double layer thruster using direct thrust measurements , 2011 .

[151]  R. Winglee,et al.  Enhanced diamagnetic perturbations and electric currents observed downstream of the high power helicon , 2011 .

[152]  N. Hershkowitz,et al.  Ambipolar ion acceleration in an expanding magnetic nozzle , 2011 .

[153]  N. Fisch,et al.  Effect of Secondary Electron Emission on Electron Cross-Field Current in $E \times B$ Discharges , 2011, IEEE Transactions on Plasma Science.

[154]  X. Tang Kinetic magnetic dynamo in a sheath-limited high-temperature and low-density plasma , 2011 .

[155]  N. Fisch,et al.  Ion acceleration in supersonically rotating magnetized-electron plasma , 2011 .

[156]  R. Davidson,et al.  Collective focusing of intense ion beam pulses for high-energy density physics applications , 2011 .

[157]  A. Gallimore,et al.  Rotating Spoke Instabilities in Hall Thrusters , 2011, IEEE Transactions on Plasma Science.

[158]  M. Merino,et al.  On plasma detachment in propulsive magnetic nozzles , 2011 .

[159]  I. Kaganovich,et al.  Absence of Debye sheaths due to secondary electron emission. , 2012, Physical review letters.

[160]  M. Keidar,et al.  Plasma-wall interaction in Hall thrusters with magnetic lens configuration , 2012 .

[161]  I. Kaganovich,et al.  Electron scattering in helium for Monte Carlo simulations , 2012 .

[162]  C. Charles,et al.  A magnetic nozzle calculation of the force on a plasma , 2012 .

[163]  S. Mazouffre Laser-induced fluorescence diagnostics of the cross-field discharge of Hall thrusters , 2012 .

[164]  I. Kaganovich,et al.  Instability, Collapse and Oscillation of Sheaths Caused by Secondary Electron Emission , 2012 .

[165]  I. Kaganovich,et al.  General cause of sheath instability identified for low collisionality plasmas in devices with secondary electron emission. , 2012, Physical review letters.

[166]  R. New,et al.  High power impulse magnetron sputtering discharges: Instabilities and plasma self-organization , 2012 .

[167]  M. Merino,et al.  Two-dimensional plasma expansion in a magnetic nozzle: Separation due to electron inertia , 2012 .

[168]  I. Mikellides,et al.  Numerical simulations of Hall-effect plasma accelerators on a magnetic-field-aligned mesh. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[169]  N. Fisch,et al.  Feedback control of an azimuthal oscillation in the E × B discharge of Hall thrusters , 2012 .

[170]  I. Boyd,et al.  One-dimensional hybrid-direct kinetic simulation of the discharge plasma in a Hall thruster , 2012 .

[171]  A. Smolyakov,et al.  Effect of Secondary Electron Emission on Electron Cross-Field Current in ExB Discharges , 2012 .

[172]  A. Smolyakov,et al.  Long wavelength gradient drift instability in Hall plasma devices. I. Fluid theory , 2012 .

[173]  N. Fisch,et al.  Cross-field electron transport induced by a rotating spoke in a cylindrical Hall thruster , 2012 .

[174]  C. Charles,et al.  Axial force imparted by a current-free magnetically expanding plasma , 2012 .

[175]  G. Bonhomme,et al.  Hall thruster plasma fluctuations identified as the E×B electron drift instability: Modeling and fitting on experimental data , 2013 .

[176]  R. Boswell,et al.  Special issue on 'Transport in B-fields in low-temperature plasmas' , 2013 .

[177]  A. Fruchtman,et al.  Enhanced momentum delivery by electric force to ions due to collisions of ions with neutrals , 2013 .

[178]  M. Merino,et al.  THE ION BEAM SHEPHERD: A NEW CONCEPT FOR ASTEROID DEFLECTION , 2013 .

[179]  L. Muschietti,et al.  Microturbulence in the electron cyclotron frequency range at perpendicular supercritical shocks , 2013 .

[180]  J. Adam,et al.  Anomalous conductivity in Hall thrusters: Effects of the non-linear coupling of the electron-cyclotron drift instability with secondary electron emission of the walls , 2013 .

[181]  A. Samokhin,et al.  Study of charged particle motion in fields of different configurations for developing the concept of plasma separation of spent nuclear fuel , 2013 .

[182]  M. Turner Numerical effects on energy distribution functions in particle-in-cell simulations with Monte Carlo collisions: choosing numerical parameters , 2013 .

[183]  M. Turner,et al.  Simulation benchmarks for low-pressure plasmas: Capacitive discharges , 2012, 1211.5246.

[184]  S. Mazouffre,et al.  Electron flow properties in the far-field plume of a Hall thruster , 2013 .

[185]  Warren B. Mori,et al.  Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators , 2013, 1310.0930.

[186]  I. Mikellides,et al.  The Effectiveness of Magnetic Shielding in High-Isp Hall Thrusters , 2013 .

[187]  M. Merino,et al.  Two-dimensional quasi-double-layers in two-electron-temperature, current-free plasmas , 2013 .

[188]  A. Smolyakov,et al.  Long wavelength gradient drift instability in Hall plasma devices. II. Applications , 2013 .

[189]  E. Ahedo,et al.  Helicon thruster plasma modeling: Two-dimensional fluid-dynamics and propulsive performances , 2013 .

[190]  A. Goncharov Invited review article: the electrostatic plasma lens. , 2013, The Review of scientific instruments.

[191]  N. Hershkowitz,et al.  Kinetic theory of plasma sheaths surrounding electron-emitting surfaces. , 2013, Physical review letters.

[192]  B. Chaudhury,et al.  Rotating instability in low-temperature magnetized plasmas. , 2013, Physical review letters.

[193]  I. Boyd,et al.  Perturbation analysis of ionization oscillations in Hall effect thrusters , 2014 .

[194]  A. Gallimore,et al.  Validation and evaluation of a novel time-resolved laser-induced fluorescence technique. , 2014, The Review of scientific instruments.

[195]  I. Boyd,et al.  Mode transition of a Hall thruster discharge plasma , 2014 .

[196]  I. Mikellides,et al.  A New Cell-Centered Implicit Numerical Scheme for Ions in the 2-D Axisymmetric Code Hall2de , 2014 .

[197]  M. Merino,et al.  Plasma detachment in a propulsive magnetic nozzle via ion demagnetization , 2014 .

[198]  A. Timofeev On the theory of plasma processing of spent nuclear fuel , 2014 .

[199]  C. McDevitt,et al.  Parallel heat flux and flow acceleration in open field line plasmas with magnetic trapping , 2014 .

[200]  A. Smolyakov,et al.  Wall current closure effects on plasma and sheath fluctuations in Hall thrusters , 2014 .

[201]  A. Dimits,et al.  A fast non-Fourier method for Landau-fluid operatorsa) , 2014 .

[202]  I. Mikellides,et al.  Assessment of Pole Erosion in a Magnetically Shielded Hall Thruster , 2014 .

[203]  N. Fisch,et al.  Cross-field plasma lens for focusing of the Hall thruster plume , 2014 .

[204]  L. Garrigues,et al.  A two-dimensional (azimuthal-axial) particle-in-cell model of a Hall thruster , 2014 .

[205]  P. Lai,et al.  Numerical thermalization in particle-in-cell simulations with Monte-Carlo collisions , 2014 .

[206]  N. Fisch,et al.  Plasma mass filtering for separation of actinides from lanthanides , 2014 .

[207]  F. Jenko,et al.  A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence , 2014 .

[208]  E. Ahedo,et al.  Low frequency azimuthal stability of the ionization region of the Hall thruster discharge. II. Global analysis , 2014 .

[209]  Sheath structure transition controlled by secondary electron emission , 2014 .

[210]  S. Mazouffre,et al.  Development and experimental characterization of a wall-less Hall thruster , 2014 .

[211]  Guobiao Cai,et al.  Effect of asymmetric secondary emission in bounded low-collisional E × B plasma on sheath and plasma properties , 2014 .

[212]  Maxwell G. Ballenger,et al.  Temperature gradients due to adiabatic plasma expansion in a magnetic nozzle , 2014 .

[213]  N. Fisch,et al.  The double well mass filter , 2014 .

[214]  R. Hofer,et al.  Plasma oscillations in a 6-kW magnetically shielded Hall thruster , 2014 .

[215]  Viktor K. Decyk,et al.  Particle-in-Cell algorithms for emerging computer architectures , 2014, Comput. Phys. Commun..

[216]  D. Coulette,et al.  An axially propagating two-stream instability in the Hall thruster plasma , 2014 .

[217]  J. Boeuf Rotating structures in low temperature magnetized plasmas—insight from particle simulations , 2014, Front. Phys..

[218]  I. Mikellides,et al.  Ion acoustic turbulence in a 100-A LaB₆ hollow cathode. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[219]  F. Halpern,et al.  Approaching the investigation of plasma turbulence through a rigorous verification and validation procedure: A practical examplea) , 2015 .

[220]  M. Cappelli,et al.  Self-organization in planar magnetron microdischarge plasmas , 2015 .

[221]  A. Smolyakov,et al.  Excitation of Ion Acoustic Waves in Plasmas with Electron Emission from Walls , 2015 .

[222]  J. Polk,et al.  Azimuthal Spoke Propagation in Hall Effect Thrusters , 2015, IEEE Transactions on Plasma Science.

[223]  A. Samokhin,et al.  On the possibility of reprocessing spent nuclear fuel and radioactive waste by plasma methods , 2015 .

[224]  V. Demidov,et al.  Measurements of low-energy electron reflection at a plasma boundary , 2015 .

[225]  D. Goebel,et al.  Plasma perturbations in high-speed probing of Hall thruster discharge chambers: quantification and mitigation , 2015 .

[226]  I. Mikellides,et al.  Conducting Wall Hall Thrusters , 2013, IEEE Transactions on Plasma Science.

[227]  E. Ahedo,et al.  Global Stability Analysis of Azimuthal Oscillations in Hall Thrusters , 2015, IEEE Transactions on Plasma Science.

[228]  M. Merino,et al.  Influence of Electron and Ion Thermodynamics on the Magnetic Nozzle Plasma Expansion , 2015, IEEE Transactions on Plasma Science.

[229]  Maxwell G. Ballenger,et al.  Investigation of Plasma Detachment From a Magnetic Nozzle in the Plume of the VX-200 Magnetoplasma Thruster , 2015, IEEE Transactions on Plasma Science.

[230]  A. Diallo,et al.  Time-resolved ion velocity distribution in a cylindrical Hall thruster: heterodyne-based experiment and modeling. , 2015, The Review of scientific instruments.

[231]  C. Charles,et al.  Non-local electron energy probability function in a plasma expanding along a magnetic nozzle , 2015, Front. Phys..

[232]  S. Tsikata,et al.  Modulated electron cyclotron drift instability in a high-power pulsed magnetron discharge. , 2015, Physical review letters.

[233]  I. Mikellides,et al.  Numerical Simulations of the Partially Ionized Gas in a 100-A LaB6 Hollow Cathode , 2015, IEEE Transactions on Plasma Science.

[234]  E. Choueiri,et al.  Critical Condition for Plasma Confinement in the Source of a Magnetic Nozzle Flow , 2015, IEEE Transactions on Plasma Science.

[235]  Renaud Gueroult,et al.  Plasma filtering techniques for nuclear waste remediation. , 2015, Journal of hazardous materials.

[236]  E. Ahedo,et al.  Electron cooling and finite potential drop in a magnetized plasma expansion , 2015 .

[237]  M. Cappelli,et al.  Ion dynamics in an E × B Hall plasma accelerator , 2015 .

[238]  P. Lai,et al.  Study of discrete-particle effects in a one-dimensional plasma simulation with the Krook type collision model , 2015 .

[239]  I. Mikellides,et al.  Wear Testing of a Magnetically Shielded Hall Thruster at 2000 s Specific Impulse IEPC-2015-155 , 2015 .

[240]  Kazunori Takahashi,et al.  Experimental identification of an azimuthal current in a magnetic nozzle of a radiofrequency plasma thruster , 2016 .

[241]  A. Mustafaev,et al.  Simulations of ion velocity distribution functions taking into account both elastic and charge exchange collisions , 2016, 1605.08587.

[242]  C. Charles,et al.  Thermodynamic Study on Plasma Expansion along a Divergent Magnetic Field. , 2016, Physical review letters.

[243]  N. Fisch,et al.  Efficiency of wave-driven rigid body rotation toroidal confinement , 2016, 1611.04166.

[244]  E. Choueiri,et al.  Electron Cooling in a Magnetically Expanding Plasma. , 2016, Physical review letters.

[245]  S. Baalrud,et al.  Theory for the anomalous electron transport in Hall effect thrusters. II. Kinetic model , 2016 .

[246]  Ion velocity distribution functions in argon and helium discharges: detailed comparison of numerical simulation results and experimental data , 2016, 1605.08892.

[247]  Sergey Bastrakov,et al.  Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors , 2015, Comput. Phys. Commun..

[248]  V. Smirnov,et al.  Parameters influencing plasma column potential in a reflex discharge , 2016 .

[249]  S. Robertson A reduced set of gyrofluid equations for plasma flow in a diverging magnetic field , 2016 .

[250]  S. Baalrud,et al.  Theory for the anomalous electron transport in Hall effect thrusters. I. Insights from particle-in-cell simulations , 2016 .

[251]  M. Merino,et al.  Space Plasma Thrusters: Magnetic Nozzles for , 2016 .

[252]  I. Mikellides,et al.  Hall2De simulations with a first-principles electron transport model based on the electron cyclotron drift instability , 2016 .

[253]  I. Mikellides,et al.  Growth and saturation of ion acoustic waves in Hall thrusters , 2016 .

[254]  M. Merino,et al.  Effect of the plasma-induced magnetic field on a magnetic nozzle , 2016 .

[255]  I. Mikellides,et al.  The importance of the cathode plume and its interactions with the ion beam in numerical simulations of Hall thrusters , 2016 .

[256]  A. Smolyakov,et al.  Structure of nonlocal gradient-drift instabilities in Hall E × B discharges , 2016 .

[257]  M. Merino,et al.  Fully magnetized plasma flow in a magnetic nozzle , 2016 .

[258]  J. Carlsson,et al.  Particle-in-Cell Simulation of Anomalous Transport in a Penning Discharge , 2017, 2017 IEEE International Conference on Plasma Science (ICOPS).

[259]  N. Fisch,et al.  Centrifugal instability in the regime of fast rotation , 2017, 1707.00918.

[260]  N. Fisch,et al.  Opportunities for plasma separation techniques in rare earth elements recycling , 2017, 1710.04506.

[261]  S. Baalrud,et al.  Characteristics and transport effects of the electron drift instability in Hall-effect thrusters , 2017 .

[262]  M. Keidar,et al.  Periodical plasma structures controlled by external magnetic field , 2016, 1611.06429.

[263]  V. Nikitin,et al.  Gradient-drift and resistive mechanisms of the anomalous electron transport in Hall effect thrusters , 2017 .

[264]  Validation and Benchmarking of Two Particle-in-Cell Codes for a Glow Discharge , 2016, 2017 IEEE International Conference on Plasma Science (ICOPS).

[265]  Henri Vincenti,et al.  PIC Codes on the Road to Exascale Architectures , 2017 .

[266]  A. Bourdon,et al.  2D particle-in-cell simulations of the electron drift instability and associated anomalous electron transport in Hall-effect thrusters , 2017 .

[267]  I. Kaganovich,et al.  Investigation of the short argon arc with hot anode. I. Numerical simulations of non-equilibrium effects in the near-electrode regions , 2017, 1708.01301.

[268]  D. A. Dolgolenko,et al.  Separation of mixtures of chemical elements in plasma , 2017 .

[269]  A. Keudell,et al.  Investigation of plasma spokes in reactive high power impulse magnetron sputtering discharge , 2017 .

[270]  S. Tsikata,et al.  Hall thruster microturbulence under conditions of modified electron wall emission , 2017 .

[271]  P. Ricci,et al.  A methodology for the rigorous verification of Particle-in-Cell simulations , 2017 .

[272]  A. Héron Oscillatory discharge behavior in Hall thrusters : relationships between the discharge current , electric field and microturbulence IEPC-2017-443 , 2017 .

[273]  A. Anders,et al.  Direct observation of spoke evolution in magnetron sputtering , 2017 .

[274]  A. Anders,et al.  Plasma potential of a moving ionization zone in DC magnetron sputtering , 2017 .

[275]  A. Smolyakov,et al.  Fluid theory and simulations of instabilities, turbulent transport and coherent structures in partially-magnetized plasmas of E×B discharges , 2016 .

[276]  R. Wirz,et al.  Propagation of ion acoustic wave energy in the plume of a high-current LaB_{6} hollow cathode. , 2017, Physical review. E.

[277]  P. Chabert,et al.  The role of instability-enhanced friction on ‘anomalous’ electron and ion transport in Hall-effect thrusters , 2017 .

[278]  N. Fisch,et al.  Harnessing mass differential confinement effects in magnetized rotating plasmas to address new separation needs , 2017, 1707.00511.

[279]  P. Sulem,et al.  Electron-scale reduced fluid models with gyroviscous effects , 2017, Journal of Plasma Physics.

[280]  A. Anders Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS) , 2017 .

[281]  L. Garrigues,et al.  Hollow cathode modeling: I. A coupled plasma thermal two-dimensional model , 2017 .

[282]  J. Boeuf Tutorial: Physics and modeling of Hall thrusters , 2017 .

[283]  K. Komurasaki,et al.  Numerical analysis of azimuthal rotating spokes in a crossed-field discharge plasma , 2017, 1712.02564.

[284]  M. Merino,et al.  Contactless steering of a plasma jet with a 3D magnetic nozzle , 2017 .

[285]  M. Merino,et al.  Kinetic electron model for plasma thruster plumes , 2018 .

[286]  C. Charles,et al.  Adiabatic Expansion of Electron Gas in a Magnetic Nozzle. , 2018, Physical review letters.

[287]  A. Hecimovic,et al.  Spokes in high power impulse magnetron sputtering plasmas , 2018, Journal of Physics D: Applied Physics.

[288]  A. Bourdon,et al.  The effects of secondary electron emission on plasma sheath characteristics and electron transport in an E × B discharge via kinetic simulations , 2018, Plasma Sources Science and Technology.

[289]  A. Bourdon,et al.  Edge-to-center plasma density ratios in two-dimensional plasma discharges , 2018 .

[290]  I. Katz,et al.  Application of a first-principles anomalous transport model for electrons to multiple Hall thrusters and operating conditions , 2018, 2018 Joint Propulsion Conference.

[291]  N. Fisch,et al.  Strategies for Advantageous Differential Transport of Ions in Magnetic Fusion Devices , 2018, 1801.06591.

[292]  C. Charles,et al.  Demonstrating a new technology for space debris removal using a bi-directional plasma thruster , 2018, Scientific Reports.

[293]  E. Ahedo,et al.  Collisional Effects in Non-stationary Plasma Expansions along Convergent-Divergent Magnetic Nozzles , 2018 .

[294]  A. Diallo,et al.  On limitations of laser-induced fluorescence diagnostics for xenon ion velocity distribution function measurements in Hall thrusters , 2018 .

[295]  Yan Shen,et al.  Space micropropulsion systems for Cubesats and small satellites: from proximate targets to furthermost frontiers , 2018 .

[296]  L. Garrigues,et al.  E × B electron drift instability in Hall thrusters: Particle-in-cell simulations vs. theory , 2018, Physics of Plasmas.

[297]  J. Carlsson,et al.  Scaling of spoke rotation frequency within a Penning discharge , 2018, Physics of Plasmas.

[298]  J. Squire,et al.  Investigation of Electric Field Oscillations related to VASIMR® VX-200 Plasma Plume Detachment , 2018, 2018 Joint Propulsion Conference.

[299]  E. Ahedo,et al.  Experimental characterization of a 1 kW Helicon Plasma Thruster , 2018 .

[300]  B. Jorns Predictive, data-driven model for the anomalous electron collision frequency in a Hall effect thruster , 2018, Plasma Sources Science and Technology.

[301]  A. Bourdon,et al.  The effect of alternative propellants on the electron drift instability in Hall-effect thrusters: Insight from 2D particle-in-cell simulations , 2018, Physics of Plasmas.

[302]  A. Smolyakov,et al.  Modification of the Simon-Hoh Instability by the sheath effects in partially magnetized E × B plasmas , 2018, Physics of Plasmas.

[303]  K. Hara Non-oscillatory quasineutral fluid model of cross-field discharge plasmas , 2018, Physics of Plasmas.

[304]  Y. Raitses,et al.  Floating potential of emitting surfaces in plasmas with respect to the space potential , 2018, 1801.07845.

[305]  Julien Derouillat,et al.  Smilei : A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation , 2017, Comput. Phys. Commun..

[306]  E. Ahedo,et al.  Particle modeling of radial electron dynamics in a controlled discharge of a Hall thruster , 2018, Plasma Sources Science and Technology.

[307]  I. Katz,et al.  Particle-in-cell simulations of Hall thruster acceleration and near plume regions , 2018, Physics of Plasmas.

[308]  J. Fils,et al.  A compact new incoherent Thomson scattering diagnostic for low-temperature plasma studies , 2018 .

[309]  S. Janhunen,et al.  Nonlinear structures and anomalous transport in partially magnetized E×B plasmas , 2017, 1705.00749.

[310]  A. Smolyakov,et al.  Current flow instability and nonlinear structures in dissipative two-fluid plasmas , 2018 .

[311]  Kyle M. Hanquist,et al.  Test cases for grid-based direct kinetic modeling of plasma flows , 2018, Plasma Sources Science and Technology.

[312]  J. Schulze,et al.  Experimental benchmark of kinetic simulations of capacitively coupled plasmas in molecular gases , 2017 .

[313]  J. Kim,et al.  Thermodynamics of a magnetically expanding plasma with isothermally behaving confined electrons , 2018, New Journal of Physics.

[314]  M. Merino,et al.  Three dimensional fluid-kinetic model of a magnetically guided plasma jet , 2018, Physics of Plasmas.

[315]  M. Becker,et al.  Comparison of six simulation codes for positive streamers in air , 2018, Plasma Sources Science and Technology.

[316]  J. Boeuf,et al.  Preface to Special Topic: Modern issues and applications of E × B plasmas , 2018, Physics of Plasmas.

[317]  B. Cuenot,et al.  A 10-moment fluid numerical solver of plasma with sheaths in a Hall Effect Thruster , 2018, 2018 Joint Propulsion Conference.

[318]  F. Taccogna,et al.  How to Build PIC-MCC Models for Hall Microthrusters , 2017, IEEE Transactions on Plasma Science.

[319]  E. Ahedo,et al.  Kinetic features and non-stationary electron trapping in paraxial magnetic nozzles , 2018 .

[320]  F. Taccogna,et al.  Three-dimensional particle-in-cell model of Hall thruster: The discharge channel , 2018, Physics of Plasmas.

[321]  A. Diallo,et al.  Controlling azimuthal spoke modes in a cylindrical Hall thruster using a segmented anode , 2018, Plasma Sources Science and Technology.

[322]  S. Janhunen,et al.  Evolution of the electron cyclotron drift instability in two-dimensions , 2018, Physics of Plasmas.

[323]  A. Smolyakov,et al.  Nonlinear structures of lower-hybrid waves driven by the ion beam , 2018, Physics of Plasmas.

[324]  B. Jorns,et al.  Spatial Evolution of Plasma Waves in the Near-field of a Magnetically Shielded Hall Thruster , 2018, 2018 Joint Propulsion Conference.

[325]  S. Zweben,et al.  Plasma mass separation , 2018, Physics of Plasmas.

[326]  P. Chabert,et al.  Anomalous electron transport in Hall-effect thrusters: Comparison between quasi-linear kinetic theory and particle-in-cell simulations , 2018, Physics of Plasmas.

[327]  I. Mikellides,et al.  Laser-induced fluorescence measurements of acceleration zone scaling in the 12.5 kW HERMeS Hall thruster , 2018, Journal of Applied Physics.

[328]  M. Merino,et al.  Fluid-kinetic propulsive magnetic nozzle model in the fully magnetized limit , 2019 .

[329]  R. Schneider,et al.  Rotating spoke instabilities in a wall-less Hall thruster: simulations , 2019, Plasma Sources Science and Technology.

[330]  A. Smolyakov,et al.  Control of Coherent Structures via External Drive of the Breathing Mode , 2019, Plasma Physics Reports.

[331]  I. Mikellides,et al.  Challenges in the development and verification of first-principles models in Hall-effect thruster simulations that are based on anomalous resistivity and generalized Ohm’s law , 2019, Plasma Sources Science and Technology.

[332]  F. Taccogna,et al.  Numerical studies of the ExB electron drift instability in Hall thrusters , 2019, Plasma Sources Science and Technology.

[333]  B. Jorns,et al.  Spatial evolution of small wavelength fluctuations in a Hall Thruster , 2019, Physics of Plasmas.

[334]  M. Merino,et al.  On electron boundary conditions in PIC plasma thruster plume simulations , 2019, Plasma Sources Science and Technology.

[335]  F. Skiff,et al.  Measurement of wave-particle interaction and metastable lifetime using laser-induced fluorescence , 2019, Physics of Plasmas.

[336]  M. Walker,et al.  Genesis of non-uniformity of plasma fluxes over emissive wall in low-temperature plasmas , 2019, Plasma Research Express.

[337]  A. Smolyakov,et al.  Boundary-induced effect on the spoke-like activity in E × B plasma , 2019, Physics of Plasmas.

[338]  L. Garrigues,et al.  2D axial-azimuthal particle-in-cell benchmark for low-temperature partially magnetized plasmas , 2019, Plasma Sources Science and Technology.

[339]  N. Fisch,et al.  E × B configurations for high-throughput plasma mass separation: An outlook on possibilities and challenges , 2019, Physics of Plasmas.

[340]  A necessary condition for perpendicular electric field control in magnetized plasmas , 2019, Physics of Plasmas.

[341]  S. Tsikata,et al.  Self-organized standing waves generated by AC-driven electron cyclotron drift instabilities , 2019 .

[342]  N. Fisch,et al.  Radial current and rotation profile tailoring in highly ionized linear plasma devices , 2019, Physics of Plasmas.

[343]  J. Jang,et al.  Time-dependent kinetic analysis of trapped electrons in a magnetically expanding plasma , 2019, Plasma Sources Science and Technology.

[344]  L. Garrigues,et al.  Measurements of electron emission under electron impact on BN sample for incident electron energy between 10 eV and 1000 eV , 2019, EPL (Europhysics Letters).

[345]  B. Jorns,et al.  Experimental Correlation between Anomalous Electron Collision Frequency and Plasma Turbulence in a Hall Effect Thruster , 2019 .

[346]  J. Boeuf Micro instabilities and rotating spokes in the near-anode region of partially magnetized plasmas , 2019, Physics of Plasmas.

[347]  K. Hara An overview of discharge plasma modeling for Hall effect thrusters , 2019, Plasma Sources Science and Technology.

[348]  A. Smolyakov,et al.  Self-Organization, Structures, and Anomalous Transport in Turbulent Partially Magnetized Plasmas with Crossed Electric and Magnetic Fields. , 2019, Physical review letters.

[349]  S. Tsikata,et al.  Time-resolved electron properties of a HiPIMS argon discharge via incoherent Thomson scattering , 2019, Plasma Sources Science and Technology.

[350]  E. Ahedo,et al.  Parametric study of the radial plasma-wall interaction in a Hall thruster , 2019, Journal of Physics D: Applied Physics.

[351]  J. Held,et al.  Pattern Formation in High Power Impulse Magnetron Sputtering (HiPIMS) Plasmas , 2019, Plasma Chemistry and Plasma Processing.

[352]  Kazunori Takahashi Helicon-type radiofrequency plasma thrusters and magnetic plasma nozzles , 2019, Reviews of Modern Plasma Physics.

[353]  N. Fisch,et al.  Nonlinear ohmic dissipation in axisymmetric DC and RF driven rotating plasmas , 2018, Physics of Plasmas.

[354]  B. Jorns,et al.  Non-invasive time-resolved measurements of anomalous collision frequency in a Hall thruster , 2019, Physics of Plasmas.

[355]  S. Mazouffre,et al.  Thomson scattering investigations of a low-power Hall thruster in standard and magnetically-shielded configurations , 2019 .

[356]  A. Bourdon,et al.  Non-isothermal sheath model for low pressure plasmas , 2019, Plasma Sources Science and Technology.

[357]  E. Ahedo,et al.  Plasma beam characterization along the magnetic nozzle of an ECR thruster , 2019, Plasma Sources Science and Technology.

[358]  E. Ahedo,et al.  Characterization of diamagnetism inside an ECR thruster with a diamagnetic loop , 2019, Physics of Plasmas.

[359]  I. Mikellides,et al.  Plasma simulations in 2-D (r-z) geometry for the assessment of pole erosion in a magnetically shielded Hall thruster , 2019, Journal of Applied Physics.

[360]  F. Taccogna,et al.  Numerical Study of Electron Cyclotron Drift Instability: Application to Hall Thruster , 2019, Front. Phys..

[361]  E. Choueiri,et al.  Electron Demagnetization in a Magnetically Expanding Plasma. , 2019, Physical review letters.

[362]  L. Garrigues,et al.  Latest progress in Hall thrusters plasma modelling , 2019, Reviews of Modern Plasma Physics.

[363]  Y. Ulaş Experimental and Theoretical Studies , 2020 .

[364]  L. Garrigues,et al.  Electron properties of an emissive cathode: analysis with incoherent thomson scattering, fluid simulations and Langmuir probe measurements , 2020, Journal of Physics D: Applied Physics.

[365]  J. Boeuf,et al.  Rotating Spokes, Ionization Instability, and Electron Vortices in Partially Magnetized E×B Plasmas. , 2020, Physical review letters.

[366]  B. Jorns,et al.  Background pressure effects on ion dynamics in a low-power magnetic nozzle thruster , 2020, Plasma Sources Science and Technology.

[367]  M. Merino,et al.  Macroscopic and parametric study of a kinetic plasma expansion in a paraxial magnetic nozzle , 2020, Plasma Sources Science and Technology.

[368]  M. Merino,et al.  Collisionless electron cooling in a plasma thruster plume: experimental validation of a kinetic model , 2020, Plasma Sources Science and Technology.

[369]  I. Mikellides,et al.  Dynamics of a hollow cathode discharge in the frequency range of 1–500 kHz , 2020, Plasma Sources Science and Technology.

[370]  A. Smolyakov,et al.  Anomalous Electron Transport in One-Dimensional Electron Cyclotron Drift Turbulence , 2020 .

[371]  A. Keudell,et al.  Electron density, temperature and the potential structure of spokes in HiPIMS , 2020, Plasma Sources Science and Technology.

[372]  C. Charles,et al.  Characterization and Control of an Ion-Acoustic Plasma Instability Downstream of a Diverging Magnetic Nozzle , 2020, Frontiers in Physics.

[373]  Sarah E. Cusson,et al.  Non-classical electron transport in the cathode plume of a Hall effect thruster , 2020 .

[374]  I. Mikellides,et al.  Facility pressure effects on a Hall thruster with an external cathode: I. Numerical simulations , 2020, Plasma Sources Science and Technology.

[375]  S. Mazouffre,et al.  Incoherent Thomson scattering measurements of electron properties in a conventional and magnetically-shielded Hall thruster , 2020, Plasma Sources Science and Technology.

[376]  I. Mikellides,et al.  Facility pressure effects on a Hall thruster with an external cathode, II: theoretical model of the thrust and the significance of azimuthal asymmetries in the cathode plasma , 2020, Plasma Sources Science and Technology.