Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities

We study the asymptotic behavior of weak energy solutions of the following damped hyperbolic equation in a bounded domain $\Omega\subset\R^3$: $\varepsilon\partial_t^2u+\gamma\partial_t u-\Delta_x u+f(u)=g,\quad u|_{\partial\Omega}=0,$ where $\gamma$ is a positive constant and $\varepsilon>0$ is a small parameter. We do not make any growth restrictions on the nonlinearity $f$ and, consequently, we do not have the uniqueness of weak solutions for this problem. We prove that the trajectory dynamical system acting on the space of all properly defined weak energy solutions of this equation possesses a global attractor $\mathcal A_\varepsilon^{tr}$ and verify that this attractor consists of global strong regular solutions, if $\varepsilon>0$ is small enough. Moreover, we also establish that, generically, any weak energy solution converges exponentially to the attractor $\mathcal A_\varepsilon^{tr}$.

[1]  Jack K. Hale,et al.  Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation , 1988 .

[2]  V. Chepyzhov,et al.  Evolution equations and their trajectory attractors , 1997 .

[3]  S. Zelik A trajectory attractor of a nonlinear elliptic system in an unbounded domain , 1996 .

[4]  O. Ladyzhenskaya,et al.  Attractors for Semigroups and Evolution Equations , 1991 .

[5]  Сергей Витальевич Зелик,et al.  Траекторный аттрактор нелинейной эллиптической системы в цилиндрической области@@@The trajectory attractor of a non-linear elliptic system in a cylindrical domain , 1996 .

[6]  V. V. Chepyzhov,et al.  Attractors of non-autonomous dynamical systems and their dimension , 1994 .

[7]  Jack K. Hale,et al.  A damped hyerbolic equation with critical exponent , 1992 .

[8]  H. H. Schaefer,et al.  Topological Vector Spaces , 1967 .

[9]  S. Zelik The attractor for a nonlinear hyperbolic equation in the unbounded domain , 2001 .

[10]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[11]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[12]  Игорь Дмитриевич Чуешов,et al.  Аналитичность глобальных аттракторов и определяющие узлы для некоторого класса нелинейных волновых уравнений с демпфированием@@@Analyticity of global attractors and determining nodes for a class of damped non-linear wave equations , 2000 .

[13]  Sergey Zelik,et al.  Uniform exponential attractors for a singularly perturbed damped wave equation , 2003 .

[14]  R. Temam,et al.  Attractors for damped nonlinear hyperbolic equations , 1987 .

[15]  G. Sell Global attractors for the three-dimensional Navier-Stokes equations , 1996 .

[16]  Perturbation of trajectory attractors for dissipative hyperbolic equations , 1999 .