Collateral branching of long‐distance cortical projections in monkey

Collateralization of individual cortical axons is well documented for rodents but less so for monkeys, where double retrograde tracer experiments have tended to find only small numbers of neurons projecting to two different injection sites. Evidence from both double label and single axon studies, however, suggests that in specific projection systems the number of neurons with collateralized axons can be 10% or greater. These include feedback projections from temporal areas (but less so those from V4 and MT/V5). Single‐axon analyses show that many parietal neurons branch to multiple targets. Except for giant Meynert cells in area V1, feedforward projections from early visual areas have only a small number of neurons with branching axons. Why only some neurons collateralize, what determines branch points and projection foci, and how this impacts network organization are largely unknown. Deciphering the branching code might offer new perspectives on space‐time organization at the network level. J. Comp. Neurol. 521:4112–4123, 2013. © 2013 Wiley Periodicals, Inc.

[1]  K. Martin,et al.  Connection from cortical area V2 to V3A in macaque monkey , 2002, The Journal of comparative neurology.

[2]  Nobuaki Tamamaki,et al.  Disposition of the slab‐like modules formed by axon branches originating from single CA1 pyramidal neurons in the rat hippocampus , 1990, The Journal of comparative neurology.

[3]  Dwight J. Kravitz,et al.  The ventral visual pathway: an expanded neural framework for the processing of object quality , 2013, Trends in Cognitive Sciences.

[4]  K. Rockland,et al.  Collateralized divergent feedback connections that target multiple cortical areas , 1996, The Journal of comparative neurology.

[5]  Vivek Mehta,et al.  Automated Tracing of Neurites from Light Microscopy Stacks of Images , 2011, Neuroinformatics.

[6]  S. Sesack,et al.  Limited collateralization of neurons in the rat prefrontal cortex that project to the nucleus accumbens , 2000, Neuroscience.

[7]  Henry Kennedy,et al.  The importance of being hierarchical , 2013, Current Opinion in Neurobiology.

[8]  Dirk Bucher,et al.  Beyond faithful conduction: Short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon , 2011, Progress in Neurobiology.

[9]  Kathleen S Rockland,et al.  Inferior parietal lobule projections to anterior inferotemporal cortex (area TE) in macaque monkey. , 2003, Cerebral cortex.

[10]  S. Sherman,et al.  Two populations of corticothalamic and interareal corticocortical cells in the subgranular layers of the mouse primary sensory cortices , 2012, The Journal of comparative neurology.

[11]  Tianyu Zhao,et al.  Interaction between Axons and Specific Populations of Surrounding Cells Is Indispensable for Collateral Formation in the Mammillary System , 2011, PloS one.

[12]  Marcus Kaiser,et al.  Nonoptimal Component Placement, but Short Processing Paths, due to Long-Distance Projections in Neural Systems , 2006, PLoS Comput. Biol..

[13]  T. Kita,et al.  The Subthalamic Nucleus Is One of Multiple Innervation Sites for Long-Range Corticofugal Axons: A Single-Axon Tracing Study in the Rat , 2012, The Journal of Neuroscience.

[14]  J. D. Macklis,et al.  Large‐scale maintenance of dual projections by callosal and frontal cortical projection neurons in adult mice , 2005, The Journal of comparative neurology.

[15]  E. V. Bockstaele,et al.  Collateralized dorsal raphe nucleus projections: A mechanism for the integration of diverse functions during stress , 2011, Journal of Chemical Neuroanatomy.

[16]  E G Jones,et al.  Long-range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  R. Caminiti,et al.  The diameter of cortical axons depends both on the area of origin and target. , 2014, Cerebral cortex.

[18]  Leslie G. Ungerleider,et al.  Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  K. Rockland,et al.  Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey. , 1992, Cerebral cortex.

[20]  Lawrence C. Sincich,et al.  Independent Projection Streams from Macaque Striate Cortex to the Second Visual Area and Middle Temporal Area , 2003, The Journal of Neuroscience.

[21]  J. Lübke,et al.  The Axon of Excitatory Neurons in the Neocortex: Projection Patterns and Target Specificity , 2010 .

[22]  M. Deschenes,et al.  Corticothalamic projections from layer 5 of the vibrissal barrel cortex in the rat , 2000, The Journal of comparative neurology.

[23]  D. Debanne,et al.  Axon physiology. , 2011, Physiological reviews.

[24]  K Cheng,et al.  Organization of Corticostriatal and Corticoamygdalar Projections Arising from the Anterior Inferotemporal Area TE of the Macaque Monkey: A Phaseolus vulgaris Leucoagglutinin Study , 1997, The Journal of Neuroscience.

[25]  Péter Buzás,et al.  Neocortical Axon Arbors Trade-off Material and Conduction Delay Conservation , 2010, PLoS Comput. Biol..

[26]  E. Welker,et al.  Constant and variable aspects of axonal phenotype in cerebral cortex. , 1998, Cerebral cortex.

[27]  Ivan S. Kotchetkov,et al.  Anatomic and molecular development of corticostriatal projection neurons in mice. , 2014, Cerebral cortex.

[28]  H. Barbas Pattern in the cortical distribution of prefrontally directed neurons with divergent axons in the rhesus monkey. , 1995, Cerebral cortex.

[29]  K. Rockland,et al.  Comparative analysis of layer-specific genes in Mammalian neocortex. , 2007, Cerebral cortex.

[30]  Alex M. Thomson,et al.  Neocortical Layer 6, A Review , 2010, Front. Neuroanat..

[31]  Julian M. L. Budd,et al.  Communication and wiring in the cortical connectome , 2012, Front. Neuroanat..

[32]  G. Gallo The cytoskeletal and signaling mechanisms of axon collateral branching , 2011, Developmental neurobiology.

[33]  T. Wiesel,et al.  Targets of horizontal connections in macaque primary visual cortex , 1991, The Journal of comparative neurology.

[34]  Martin Deschênes,et al.  Single‐cell study of motor cortex projections to the barrel field in rats , 2003, The Journal of comparative neurology.

[35]  K. Rockland,et al.  Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey. , 1994, Cerebral cortex.

[36]  Elena Borra,et al.  Distinct Feedforward and Intrinsic Neurons in Posterior Inferotemporal Cortex Revealed by in Vivo Connection Imaging , 2012, Scientific Reports.

[37]  K. Rockland Two types of corticopulvinar terminations: Round (type 2) and elongate (type 1) , 1996, The Journal of comparative neurology.

[38]  Kathleen S Rockland,et al.  Multisensory convergence in calcarine visual areas in macaque monkey. , 2003, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[39]  T. Wiesel,et al.  Clustered intrinsic connections in cat visual cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  K. Rockland,et al.  Convergence and branching patterns of round, type 2 corticopulvinar axons , 1998, The Journal of comparative neurology.

[41]  E. G. Jones,et al.  Characteristics of intracellularly injected infragranular pyramidal neurons in cat primary auditory cortex. , 1992, Cerebral cortex.

[42]  B. Hu,et al.  Functional architecture and spike timing properties of corticofugal projections from rat ventral temporal cortex. , 2008, Journal of neurophysiology.

[43]  A. Burkhalter,et al.  Organization of local axon collaterals of efferent projection neurons in rat visual cortex , 1990, The Journal of comparative neurology.

[44]  J. Bullier,et al.  Anatomical segregation of two cortical visual pathways in the macaque monkey , 1990, Visual Neuroscience.

[45]  Leslie G. Ungerleider,et al.  The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  K. Rockland,et al.  Axon collaterals of meynert cells diverge over large portions of area V1 in the macaque monkey , 2001, The Journal of comparative neurology.

[47]  Martin Parent,et al.  Single‐axon tracing study of corticostriatal projections arising from primary motor cortex in primates , 2006, The Journal of comparative neurology.

[48]  W. B. Spatz,et al.  Morphology and connections of neurons in area 17 projecting to the extrastriate areas mt and 19DM and to the superior colliculus in the monkey Callithrix jacchus , 1995, The Journal of comparative neurology.

[49]  R. Andersen,et al.  Callosal and prefrontal associational projecting cell populations in area 7A of the macaque monkey: A study using retrogradely transported fluorescent dyes , 1985, The Journal of comparative neurology.

[50]  Elena Borra,et al.  Projections to Early Visual Areas V1 and V2 in the Calcarine Fissure from Parietal Association Areas in the Macaque , 2011, Front. Neuroanat..

[51]  Edward M Callaway,et al.  Cell type specificity of local cortical connections , 2002, Journal of neurocytology.

[52]  W. Fries,et al.  Large layer VI cells in macaque striate cortex (Meynert cells) project to both superior colliculus and prestriate visual area V5 , 2004, Experimental Brain Research.

[53]  J S Shiner,et al.  Computation of action potential propagation and presynaptic bouton activation in terminal arborizations of different geometries. , 1990, Biophysical journal.

[54]  R. Douglas,et al.  Axons in cat visual cortex are topologically self-similar. , 2004, Cerebral cortex.

[55]  K. Rockland,et al.  Organization of individual cortical axons projecting from area V1 (area 17) to V2 (area 18) in the macaque monkey , 1990, Visual Neuroscience.

[56]  C. Koch,et al.  Effect of geometrical irregularities on propagation delay in axonal trees. , 1991, Biophysical journal.

[57]  A. Reiner,et al.  Corticostriatal Projection Neurons – Dichotomous Types and Dichotomous Functions , 2010, Front. Neuroanat..

[58]  K. Rockland,et al.  Morphology of individual axons projecting from area V2 to MT in the macaque , 1995, The Journal of comparative neurology.

[59]  H. Kennedy,et al.  A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  T. Kaneko,et al.  Patterns of axonal collateralization of single layer V cortical projection neurons in the rat presubiculum , 2011, The Journal of comparative neurology.

[61]  T. Cutforth,et al.  Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons , 2011, Nature.

[62]  A. Angelucci,et al.  Segregation and overlap of callosal and association neurons in frontal and parietal cortices of primates: a spectral and coherency analysis , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  Dwight J. Kravitz,et al.  A new neural framework for visuospatial processing , 2011, Nature Reviews Neuroscience.

[64]  G. Innocenti,et al.  Computational Structure of Visual Callosal Axons , 1994, The European journal of neuroscience.

[65]  R. Guillery,et al.  Branched thalamic afferents: What are the messages that they relay to the cortex? , 2011, Brain Research Reviews.

[66]  H. Kennedy,et al.  Axonal bifurcation in the visual system , 1987, Trends in Neurosciences.

[67]  G. Innocenti Development and evolution: two determinants of cortical connectivity. , 2011, Progress in brain research.

[68]  Kevan A C Martin,et al.  Synaptic connection from cortical area V4 to V2 in macaque monkey , 2006, The Journal of comparative neurology.

[69]  K. Rockland,et al.  Feedback connections from area MT of the squirrel monkey to areas V1 and V2 , 2000, The Journal of comparative neurology.

[70]  Martin Lévesque,et al.  Organization of the basal ganglia: the importance of axonal collateralization , 2000, Trends in Neurosciences.

[71]  P S Goldman-Rakic,et al.  Callosal and intrahemispheric connectivity of the prefrontal association cortex in rhesus monkey: Relation between intraparietal and principal sulcal cortex , 1984, The Journal of comparative neurology.

[72]  K. Rockland,et al.  Divergent feedback connections from areas V4 and TEO in the macaque , 1994, Visual Neuroscience.

[73]  R. Gattass,et al.  Cortical visual areas in monkeys: location, topography, connections, columns, plasticity and cortical dynamics , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[74]  K. Rockland,et al.  Inferior parietal lobule projections to the presubiculum and neighboring ventromedial temporal cortical areas , 2000, The Journal of comparative neurology.

[75]  E. Mengual,et al.  Axonal branching patterns of nucleus accumbens neurons in the rat , 2010, The Journal of comparative neurology.