The Corynebacterium diphtheriae shaft pilin SpaA is built of tandem Ig-like modules with stabilizing isopeptide and disulfide bonds

Cell-surface pili are important virulence factors that enable bacterial pathogens to adhere to specific host tissues and modulate host immune response. Relatively little is known about the structure of Gram-positive bacterial pili, which are built by the sortase-catalyzed covalent crosslinking of individual pilin proteins. Here we report the 1.6-Å resolution crystal structure of the shaft pilin component SpaA from Corynebacterium diphtheriae, revealing both common and unique features. The SpaA pilin comprises 3 tandem Ig-like domains, with characteristic folds related to those typically found in non-pilus adhesins. Whereas both the middle and the C-terminal domains contain an intramolecular Lys–Asn isopeptide bond, previously detected in the shaft pilins of Streptococcus pyogenes and Bacillus cereus, the middle Ig-like domain also harbors a calcium ion, and the C-terminal domain contains a disulfide bond. By mass spectrometry, we show that the SpaA monomers are cross-linked in the assembled pili by a Lys–Thr isopeptide bond, as predicted by previous genetic studies. Together, our results reveal that despite profound dissimilarities in primary sequences, the shaft pilins of Gram-positive pathogens have strikingly similar tertiary structures, suggesting a modular backbone construction, including stabilizing intermolecular and intramolecular isopeptide bonds.

[1]  E. Baker,et al.  Expression, purification, crystallization and preliminary crystallographic analysis of SpaA, a major pilin from Corynebacterium diphtheriae. , 2009, Acta crystallographica. Section F, Structural biology and crystallization communications.

[2]  E. Baker,et al.  Intramolecular Isopeptide Bonds Give Thermodynamic and Proteolytic Stability to the Major Pilin Protein of Streptococcus pyogenes* , 2009, The Journal of Biological Chemistry.

[3]  O. Schneewind,et al.  Sortase D Forms the Covalent Bond That Links BcpB to the Tip of Bacillus cereus Pili* , 2009, Journal of Biological Chemistry.

[4]  Jennifer L. Martin,et al.  DSB proteins and bacterial pathogenicity , 2009, Nature Reviews Microbiology.

[5]  E. Baker,et al.  Pili in Gram-negative and Gram-positive bacteria — structure, assembly and their role in disease , 2009, Cellular and Molecular Life Sciences.

[6]  Viola Vogel,et al.  Catch-bond mechanism of force-enhanced adhesion: counterintuitive, elusive, but ... widespread? , 2008, Cell host & microbe.

[7]  Anjali Mandlik,et al.  The molecular switch that activates the cell wall anchoring step of pilus assembly in gram-positive bacteria , 2008, Proceedings of the National Academy of Sciences.

[8]  J. Beckwith,et al.  Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation , 2008, Proceedings of the National Academy of Sciences.

[9]  L. Marraffini,et al.  Amide bonds assemble pili on the surface of bacilli , 2008, Proceedings of the National Academy of Sciences.

[10]  Edward N. Baker,et al.  Stabilizing Isopeptide Bonds Revealed in Gram-Positive Bacterial Pilus Structure , 2007, Science.

[11]  T. Yeates,et al.  How Some Pili Pull , 2007, Science.

[12]  Anjali Mandlik,et al.  Housekeeping sortase facilitates the cell wall anchoring of pilus polymers in Corynebacterium diphtheriae , 2007, Molecular microbiology.

[13]  S. Narayana,et al.  An IgG-like domain in the minor pilin GBS52 of Streptococcus agalactiae mediates lung epithelial cell adhesion. , 2007, Structure.

[14]  S. Narayana,et al.  The Enterococcus faecalis MSCRAMM ACE Binds Its Ligand by the Collagen Hug Model* , 2007, Journal of Biological Chemistry.

[15]  Eric Blanc,et al.  Automated structure solution with autoSHARP. , 2007, Methods in molecular biology.

[16]  O. Schneewind,et al.  Pili prove pertinent to enterococcal endocarditis. , 2006, The Journal of clinical investigation.

[17]  H. Ton-That,et al.  Type III Pilus of Corynebacteria: Pilus Length Is Determined by the Level of Its Major Pilin Subunit , 2006, Journal of Bacteriology.

[18]  Rino Rappuoli,et al.  Pili in Gram-positive pathogens , 2006, Nature Reviews Microbiology.

[19]  R. Rappuoli,et al.  A pneumococcal pilus influences virulence and host inflammatory responses. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[20]  H. Ton-That,et al.  Assembly of Distinct Pilus Structures on the Surface of Corynebacterium diphtheriae , 2006, Journal of bacteriology.

[21]  S. Narayana,et al.  A ‘Collagen Hug’ Model for Staphylococcus aureus CNA binding to collagen , 2005, The EMBO journal.

[22]  R. Rappuoli,et al.  Genome Analysis Reveals Pili in Group B Streptococcus , 2005, Science.

[23]  K Henrick,et al.  Electronic Reprint Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions , 2022 .

[24]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[25]  L. Marraffini,et al.  Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae , 2004, Molecular microbiology.

[26]  O. Schneewind,et al.  Assembly of pili in Gram-positive bacteria. , 2004, Trends in microbiology.

[27]  Randy J Read,et al.  Recent developments in the PHENIX software for automated crystallographic structure determination. , 2004, Journal of synchrotron radiation.

[28]  O. Schneewind,et al.  Assembly of pili on the surface of Corynebacterium diphtheriae , 2003, Molecular microbiology.

[29]  Thomas C. Terwilliger,et al.  Electronic Reprint Biological Crystallography Automated Main-chain Model Building by Template Matching and Iterative Fragment Extension , 2022 .

[30]  W. B. Arendall,et al.  New tools and data for improving structures, using all-atom contacts. , 2003, Methods in enzymology.

[31]  M. Carson,et al.  A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus: crystal structure of the fibrinogen‐binding MSCRAMM, clumping factor A , 2002, The EMBO journal.

[32]  George M Sheldrick,et al.  Substructure solution with SHELXD. , 2002, Acta crystallographica. Section D, Biological crystallography.

[33]  John E. Johnson,et al.  Topologically linked protein rings in the bacteriophage HK97 capsid. , 2000, Science.

[34]  M. Carson,et al.  Novel fold and assembly of the repetitive B region of the Staphylococcus aureus collagen-binding surface protein. , 2000, Structure.

[35]  S. Narayana,et al.  Domain structure of the Staphylococcus aureus collagen adhesin. , 1998, Biochemistry.

[36]  L. DeLucas,et al.  Structure of the collagen-binding domain from a Staphylococcus aureus adhesin , 1997, Nature Structural Biology.

[37]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[38]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[39]  M. Höök,et al.  MSCRAMM-mediated adherence of microorganisms to host tissues. , 1994, Annual review of microbiology.

[40]  R F Standaert,et al.  Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. , 1993, Journal of molecular biology.