Upper bounds on the queuenumber of k-ary n-cubes

A queue layout of a graph consists of a linear order of its vertices, and a partition of its edges into queues, such that no two edges in the same queue are nested. The minimum number of queues in a queue layout of a graph G, denoted by qn(G), is called the queuenumber of G. Heath and Rosenberg [SIAM J. Comput. 21 (1992) 927-958] showed that boolean n-cube (i.e., the n-dimensional hypercube) can be laid out using at most n-1 queues. Heath et al. [SIAM J. Discrete Math. 5 (1992) 398-412] showed that the ternary n-cube can be laid out using at most 2n-2 queues. Recently, Hasunuma and Hirota [Inform. Process. Lett. 104 (2007) 41-44] improved the upper bound on queuenumber to n-2 for hypercubes. In this paper, we deal with the upper bound on queuenumber of a wider class of graphs called k-ary n-cubes, which contains hypercubes and ternary n-cubes as subclasses. Our result improves the previous bound in the case of ternary n-cubes. Let Q"n^k denote the n-dimensional k-ary cube. This paper contributes three main results as follows:(1)qn(Q"n^3)= =3. (2)qn(Q"n^k)= =2 and 4==1 and k>=9.

[1]  Akihiro Nozaki,et al.  Generating and sorting permutations using restricted-deques , 1977 .

[2]  Kung-Jui Pai,et al.  A Note on "An improved upper bound on the queuenumber of the hypercube" , 2008, Inf. Process. Lett..

[3]  Toru Hasunuma Queue layouts of iterated line directed graphs , 2007, Discret. Appl. Math..

[4]  Abdel Elah Al-Ayyoub,et al.  Fault Diameter of k-ary n-cube Networks , 1997, IEEE Trans. Parallel Distributed Syst..

[5]  Lenwood S. Heath,et al.  Stack and Queue Layouts of Directed Planar Graphs , 1993, Planar Graphs.

[6]  Emilio Di Giacomo,et al.  Computing straight-line 3D grid drawings of graphs in linear volume , 2005, Comput. Geom..

[7]  Robert E. Tarjan,et al.  Sorting Using Networks of Queues and Stacks , 1972, J. ACM.

[8]  Arnold L. Rosenberg,et al.  Comparing Queues and Stacks as Mechanisms for Laying out Graphs , 1992, SIAM J. Discret. Math..

[9]  William J. Dally,et al.  Performance Analysis of k-Ary n-Cube Interconnection Networks , 1987, IEEE Trans. Computers.

[10]  Yaagoub Ashir,et al.  Lee Distance and Topological Properties of k-ary n-cubes , 1995, IEEE Trans. Computers.

[11]  C. E. Veni Madhavan,et al.  Stack and Queue Number of 2-Trees , 1995, COCOON.

[12]  Lenwood S. Heath,et al.  Laying out Graphs Using Queues , 1992, SIAM J. Comput..

[13]  David R. Wood,et al.  Queue Layouts, Tree-Width, and Three-Dimensional Graph Drawing , 2002, FSTTCS.

[14]  Lenwood S. Heath,et al.  Stack and Queue Layouts of Directed Acyclic Graphs: Part I , 1999, SIAM J. Comput..

[15]  Vaughan R. Pratt,et al.  Computing permutations with double-ended queues, parallel stacks and parallel queues , 1973, STOC.

[16]  Lenwood S. Heath,et al.  Stack and Queue Layouts of Posets , 1997, SIAM J. Discret. Math..

[17]  Joseph L. Ganley,et al.  Stack and Queue Layouts of Halin Graphs , 2001 .

[18]  Arnold L. Rosenberg,et al.  Scheduling Tree-Dags Using FIFO Queues: A Control-Memory Trade-Off , 1996, J. Parallel Distributed Comput..

[19]  Sriram Venkata Pemmarju Exploring the powers of stacks and queues via graph layouts , 1992 .

[20]  David R. Wood,et al.  On Linear Layouts of Graphs , 2004, Discret. Math. Theor. Comput. Sci..

[21]  Toru Hasunuma,et al.  An improved upper bound on the queuenumber of the hypercube , 2007, Inf. Process. Lett..

[22]  Îáá Íâåçîá Þ Ü Ý ¸ Èì Åçêáae Ü Ý,et al.  Layout of Graphs with Bounded Tree-Width , 2004 .

[23]  A. Itai,et al.  QUEUES, STACKS AND GRAPHS , 1971 .

[24]  Arnold L. Rosenberg,et al.  The Diogenes Approach to Testable Fault-Tolerant Arrays of Processors , 1983, IEEE Transactions on Computers.

[25]  Kung-Jui Pai,et al.  A new upper bound on the queuenumber of hypercubes , 2010, Discret. Math..

[26]  David R. Wood,et al.  Queue Layouts of Graph Products and Powers , 2005, Discret. Math. Theor. Comput. Sci..