Genes Lost and Genes Found: Evolution of Bacterial Pathogenesis and Symbiosis

Traditionally, evolutionary biologists have viewed mutations within individual genes as the major source of phenotypic variation leading to adaptation through natural selection, and ultimately generating diversity among species. Although such processes must contribute to the initial development of gene functions and their subsequent fine-tuning, changes in genome repertoire, occurring through gene acquisition and deletion, are the major events underlying the emergence and evolution of bacterial pathogens and symbionts. Furthermore, pathogens and symbionts depend on similar mechanisms for interacting with hosts and show parallel trends in genome evolution.

[1]  P. Buchner Endosymbiosis of Animals with Plant Microorganisms , 1965 .

[2]  C. Sasakawa,et al.  The absence of a surface protease, OmpT, determines the intercellular spreading ability of Shigella: the relationship between the ompT and kcpA loci , 1993, Molecular microbiology.

[3]  M. Katz,et al.  A role for bacteriophages in the evolution and transfer of bacterial virulence determinants , 1995, Molecular microbiology.

[4]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[5]  J. Maniloff,et al.  The minimal cell genome: "on being the right size". , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[6]  N. Moran Accelerated evolution and Muller's rachet in endosymbiotic bacteria. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Howard Ochman,et al.  Pathogenicity Islands: Bacterial Evolution in Quantum Leaps , 1996, Cell.

[8]  J Hacker,et al.  Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution , 1997, Molecular microbiology.

[9]  H. Ochman,et al.  How Salmonella became a pathogen. , 1997, Trends in microbiology.

[10]  T. McDaniel,et al.  A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K‐12 , 1997, Molecular microbiology.

[11]  S. Salzberg,et al.  Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi , 1997, Nature.

[12]  E. Delong Marine microbial diversity: the tip of the iceberg. , 1997, Trends in biotechnology.

[13]  T. Sicheritz-Pontén,et al.  The genome sequence of Rickettsia prowazekii and the origin of mitochondria , 1998, Nature.

[14]  P. Langford,et al.  Natural genetic exchange between Haemophilus and Neisseria: intergeneric transfer of chromosomal genes between major human pathogens. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[15]  E V Koonin,et al.  Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. , 1998, Trends in genetics : TIG.

[16]  C. Kurland,et al.  Reductive evolution of resident genomes. , 1998, Trends in microbiology.

[17]  Philip Hugenholtz,et al.  Impact of Culture-Independent Studies on the Emerging Phylogenetic View of Bacterial Diversity , 1998, Journal of bacteriology.

[18]  S. Salzberg,et al.  Complete genome sequence of Treponema pallidum, the syphilis spirochete. , 1998, Science.

[19]  R. W. Davis,et al.  Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. , 1998, Science.

[20]  D. Dykhuizen,et al.  Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Shmuel Razin,et al.  Molecular Biology and Pathogenicity of Mycoplasmas , 1998, Microbiology and Molecular Biology Reviews.

[22]  C. Ronson,et al.  Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  E. Groisman,et al.  At Least Four Percent of the Salmonella typhimurium Genome Is Required for Fatal Infection of Mice , 1998, Infection and Immunity.

[24]  R. Sandaa,et al.  Novel techniques for analysing microbial diversity in natural and perturbed environments. , 1998, Journal of biotechnology.

[25]  S. Casjens,et al.  The diverse and dynamic structure of bacterial genomes. , 1998, Annual review of genetics.

[26]  C. Hueck,et al.  Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants , 1998, Microbiology and Molecular Biology Reviews.

[27]  S. Salzberg,et al.  Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.

[28]  B F Lang,et al.  Mitochondrial genome evolution and the origin of eukaryotes. , 1999, Annual review of genetics.

[29]  S. Casjens Evolution of the linear DNA replicons of the Borrelia spirochetes. , 1999, Current opinion in microbiology.

[30]  D. Relman,et al.  Bacterial diversity within the human subgingival crevice. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Serap Aksoy,et al.  Concordant Evolution of a Symbiont with Its Host Insect Species: Molecular Phylogeny of Genus Glossina and Its Bacteriome-Associated Endosymbiont, Wigglesworthia glossinidia , 1999, Journal of Molecular Evolution.

[32]  J. Galán,et al.  Type III Secretion Machines: Bacterial Devices for Protein Delivery into Host Cells , 1999 .

[33]  J. Andersson,et al.  Insights into the evolutionary process of genome degradation. , 1999, Current opinion in genetics & development.

[34]  E V Koonin,et al.  Rickettsiae and Chlamydiae: evidence of horizontal gene transfer and gene exchange. , 1999, Trends in genetics : TIG.

[35]  Robinson,et al.  Pathways of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses: expression of host and symbiont glutamine synthetase , 1999, The Journal of experimental biology.

[36]  B. Lang,et al.  Mitochondrial evolution. , 1999, Science.

[37]  G. Hurst,et al.  Wolbachia pipientis: microbial manipulator of arthropod reproduction. , 1999, Annual review of microbiology.

[38]  J. Davison,et al.  Genetic exchange between bacteria in the environment. , 1999, Plasmid.

[39]  J. Handelsman,et al.  The Earth's bounty: assessing and accessing soil microbial diversity. , 1999, Trends in biotechnology.

[40]  N. Moran,et al.  Lifestyle evolution in symbiotic bacteria: insights from genomics. , 2000, Trends in ecology & evolution.

[41]  J. Hacker,et al.  Pathogenicity islands and the evolution of microbes. , 2000, Annual review of microbiology.

[42]  Edward G. Ruby,et al.  Vibrio fischeri lux Genes Play an Important Role in Colonization and Development of the Host Light Organ , 2000, Journal of bacteriology.

[43]  O. Schneewind,et al.  Type III machines of Gram-negative bacteria: delivering the goods. , 2000, Trends in microbiology.

[44]  W Miller,et al.  Comparison of the Escherichia coli K-12 genome with sampled genomes of a Klebsiella pneumoniae and three salmonella enterica serovars, Typhimurium, Typhi and Paratyphi. , 2000, Nucleic acids research.

[45]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[46]  Mark J. Taylor,et al.  Inflammatory Responses Induced by the Filarial Nematode Brugia malayi Are Mediated by Lipopolysaccharide-like Activity from Endosymbiotic Wolbachia Bacteria , 2000, The Journal of experimental medicine.

[47]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[48]  M. Hattori,et al.  Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS , 2000, Nature.

[49]  D. Haydon,et al.  From the Cover: The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion , 2001 .

[50]  N. W. Davis,et al.  Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 , 2001, Nature.