Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals

[1]  M. Yudasaka,et al.  Electronically modified single wall carbon nanohorns with iodine adsorption , 2011 .

[2]  Mark A. Locascio,et al.  A multiscale study of high performance double-walled nanotube-polymer fibers. , 2010, ACS nano.

[3]  K. Jiang,et al.  Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns. , 2010, ACS nano.

[4]  Feng Hou,et al.  Continuous Multilayered Carbon Nanotube Yarns , 2010, Advanced materials.

[5]  Ultrathin carbon nanotube fibrils of high electrochemical capacitance. , 2009, ACS nano.

[6]  T. Kang,et al.  Macroscopic Single‐Walled‐Carbon‐Nanotube Fiber Self‐Assembled by Dip‐Coating Method , 2009, Advanced materials.

[7]  Wei Zhou,et al.  True solutions of single-walled carbon nanotubes for assembly into macroscopic materials , 2009, Nature Nanotechnology.

[8]  J. Meindl,et al.  Breakdown current density of graphene nanoribbons , 2009, 0906.4156.

[9]  J. Ihm,et al.  Modification of the electronic structure in a carbon nanotube with the charge dopant encapsulation , 2008, 0804.4544.

[10]  Satish Kumar,et al.  Making Strong Fibers , 2008, Science.

[11]  Michael Sennett,et al.  High-Performance Carbon Nanotube Fiber , 2007, Science.

[12]  T. Clapp,et al.  Ultrastrong, Stiff, and Lightweight Carbon‐Nanotube Fibers , 2007 .

[13]  Lianxi Zheng,et al.  Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. , 2007, Small.

[14]  R. Smalley,et al.  A highly selective, one-pot purification method for single-walled carbon nanotubes. , 2007, The journal of physical chemistry. B.

[15]  L. Wilson,et al.  Preparation of I2@SWNTs: synthesis and spectroscopic characterization of I2-loaded SWNTs. , 2006, The journal of physical chemistry. B.

[16]  E. Flahaut,et al.  Structural selective charge transfer in iodine-doped carbon nanotubes , 2006 .

[17]  R. Annamalai,et al.  Electrophoretic drawing of continuous fibers of single-walled carbon nanotubes , 2005 .

[18]  P. Bernier,et al.  Production of pure nanotube fibers using a modified wet-spinning method , 2005 .

[19]  Ya-Li Li,et al.  Mechanical properties of continuously spun fibers of carbon nanotubes. , 2005, Nano letters.

[20]  M. Kozlov,et al.  Spinning Solid and Hollow Polymer‐Free Carbon Nanotube Fibers , 2005 .

[21]  P. Poulin,et al.  Correlation of properties with preferred orientation in coagulated and stretch-aligned single-wall carbon nanotubes , 2004 .

[22]  K. R. Atkinson,et al.  Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology , 2004, Science.

[23]  E. Flahaut,et al.  Raman spectroscopy of iodine-doped double-walled carbon nanotubes , 2004, cond-mat/0410664.

[24]  Myung Jong Kim,et al.  Macroscopic, Neat, Single-Walled Carbon Nanotube Fibers , 2002, Science.

[25]  Joselito M. Razal,et al.  Super-tough carbon-nanotube fibres , 2003, Nature.

[26]  Hongwei Zhu,et al.  Preparation of highly pure double-walled carbon nanotubes , 2003 .

[27]  L. Kumari,et al.  Effect of iodine incorporation on the electrical properties of amorphous conducting carbon films , 2003 .

[28]  M. Itkis,et al.  Chemistry of single-walled carbon nanotubes. , 2002, Accounts of chemical research.

[29]  J. Fischer Chemical doping of single-wall carbon nanotubes. , 2002, Accounts of chemical research.

[30]  Ying Liang,et al.  Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system , 2002 .

[31]  Weiya Zhou,et al.  Raman scattering and thermogravimetric analysis of iodine-doped multiwall carbon nanotubes , 2002 .

[32]  P. Ajayan,et al.  Reliability and current carrying capacity of carbon nanotubes , 2001 .

[33]  P. Poulin,et al.  Macroscopic fibers and ribbons of oriented carbon nanotubes. , 2000, Science.

[34]  P. Eklund,et al.  Reversible Intercalation of Charged Iodine Chains into Carbon Nanotube Ropes , 1998 .

[35]  H. J. Kim,et al.  Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br , 1997, Nature.

[36]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.