Extended Edge-Weighted Centroidal Voronoi Tessellation for Image Segmentation

In this paper, we extend the basic edge-weighted centroidal Voronoi tessellation model (EWCVT) for image segmentation to a new advanced model, namely fuzzy and harmonic EWCVT model. This extended model introduces a fuzzy and harmonic form of clustering energy by combining the image intensity with cluster boundary information. Compared with the classic CVT and EWCVT methods, the fuzzy and harmonic EWCVT algorithm can not only overcome the sensitivity to the initialization and noise, but also improve the accuracy of clustering results, as verified in several biomedical images.

[1]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[2]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Tony F. Chan,et al.  ACTIVE CONTOUR and SEGMENTATION MODELS USING GEOMETRIC PDE's for MEDICAL IMAGING ? , 2002 .

[4]  Martin D. Fox,et al.  Erratum: Distance regularized level set evolution and its application to image segmentation (IEEE Transactions on Image Processingvol (2010) 19:12 (3243-3254)) , 2011 .

[5]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[6]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[7]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[8]  B. S. Manjunath,et al.  EdgeFlow: a technique for boundary detection and image segmentation , 2000, IEEE Trans. Image Process..

[9]  Rui Seara,et al.  Image segmentation by histogram thresholding using fuzzy sets , 2002, IEEE Trans. Image Process..

[10]  Rachid Deriche,et al.  Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation , 2002, International Journal of Computer Vision.

[11]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[12]  Qiang Du,et al.  Centroidal Voronoi Tessellation Algorithms for Image Compression, Segmentation, and Multichannel Restoration , 2006, Journal of Mathematical Imaging and Vision.

[13]  Daoqiang Zhang,et al.  Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation , 2007, Pattern Recognit..

[14]  N. Senthilkumaran,et al.  Image Segmentation - A Survey of Soft Computing Approaches , 2009, 2009 International Conference on Advances in Recent Technologies in Communication and Computing.

[15]  Jie Wang,et al.  VCells: Simple and Efficient Superpixels Using Edge-Weighted Centroidal Voronoi Tessellations , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Agus Zainal Arifin,et al.  Image segmentation by histogram thresholding using hierarchical cluster analysis , 2006, Pattern Recognit. Lett..

[17]  Gareth Funka-Lea,et al.  Graph Cuts and Efficient N-D Image Segmentation , 2006, International Journal of Computer Vision.

[18]  Jie Wang,et al.  An Edge-Weighted Centroidal Voronoi Tessellation Model for Image Segmentation , 2009, IEEE Transactions on Image Processing.

[19]  Jie Wang,et al.  Image Segmentation Using Local Variation and Edge-Weighted Centroidal Voronoi Tessellations , 2011, IEEE Transactions on Image Processing.

[20]  N. Mitianoudis,et al.  Spatial kernel K-harmonic means clustering for multi-spectral image segmentation , 2007 .