Largely enhanced energy storage performance of sandwich-structured polymer nanocomposites with synergistic inorganic nanowires

[1]  Yang Liu,et al.  Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary , 2018, Nature.

[2]  Amit Kumar,et al.  Tuning of dielectric and impedance properties of PVDF by incorporation of Mg doped PZT , 2018, Journal of Materials Science: Materials in Electronics.

[3]  Zeyu Li,et al.  Enhanced energy storage performance of ferroelectric polymer nanocomposites at relatively low electric fields induced by surface modified BaTiO3 nanofibers , 2018, Composites Science and Technology.

[4]  M. Kar,et al.  PVDF, Barium Hexaferrites, and rGO Nanocomposite for High Energy Density Capacitor , 2018, IEEE Transactions on Nanotechnology.

[5]  Hong Wang,et al.  High-Temperature Dielectric Materials for Electrical Energy Storage , 2018, Annual Review of Materials Research.

[6]  M. Kar,et al.  Enhancement of dielectric constant in polymer-ceramic nanocomposite for flexible electronics and energy storage applications , 2018 .

[7]  Bin Yao,et al.  Ultrahigh energy density and greatly enhanced discharged efficiency of sandwich-structured polymer nanocomposites with optimized spatial organization , 2018 .

[8]  Yang Shen,et al.  High‐Throughput Phase‐Field Design of High‐Energy‐Density Polymer Nanocomposites , 2018, Advanced materials.

[9]  Long-Qing Chen,et al.  High‐Performance Polymers Sandwiched with Chemical Vapor Deposited Hexagonal Boron Nitrides as Scalable High‐Temperature Dielectric Materials , 2017, Advanced materials.

[10]  Hong Wang,et al.  Ultrahigh electric displacement and energy density in gradient layer-structured BaTiO3/PVDF nanocomposites with an interfacial barrier effect , 2017 .

[11]  Hong Wang,et al.  High‐Energy‐Density Dielectric Polymer Nanocomposites with Trilayered Architecture , 2017 .

[12]  Hong Wang,et al.  Compositional tailoring effect on electric field distribution for significantly enhanced breakdown strength and restrained conductive loss in sandwich-structured ceramic/polymer nanocomposites , 2017 .

[13]  Bing Xie,et al.  Largely enhanced ferroelectric and energy storage performances of P(VDF-CTFE) nanocomposites at a lower electric field using BaTiO3 nanowires by stirring hydrothermal method , 2016 .

[14]  Qing Wang,et al.  Ferroelectric Polymers and Their Energy‐Related Applications , 2016 .

[15]  Xin Zhang,et al.  High energy density of polymer nanocomposites at a low electric field induced by modulation of their topological-structure , 2016 .

[16]  M. Kar,et al.  Increase of dielectric constant in PVDF by incorporating La1.8Sr0.2NiO4 into its matrix , 2016 .

[17]  Enhanced breakdown strength and energy density in PVDF nanocomposites with functionalized MgO nanoparticles , 2016 .

[18]  Yang Shen,et al.  Polymer nanocomposites with high energy storage densities , 2015 .

[19]  Pingkai Jiang,et al.  Tailoring Dielectric Properties and Energy Density of Ferroelectric Polymer Nanocomposites by High-k Nanowires. , 2015, ACS applied materials & interfaces.

[20]  Yang Shen,et al.  Polymer-Based Dielectrics with High Energy Storage Density , 2015 .

[21]  Guangzu Zhang,et al.  A Hybrid Material Approach Toward Solution‐Processable Dielectrics Exhibiting Enhanced Breakdown Strength and High Energy Density , 2015 .

[22]  Qinghua Zhang,et al.  Ultrahigh Energy Density of Polymer Nanocomposites Containing BaTiO3@TiO2 Nanofibers by Atomic‐Scale Interface Engineering , 2015, Advanced materials.

[23]  J. Zhai,et al.  Improving the dielectric constant and energy density of poly(vinylidene fluoride) composites induced by surface-modified SrTiO3 nanofibers by polyvinylpyrrolidone , 2015 .

[24]  H. Mohamed,et al.  Characteristics and optical properties of MgO nanowires synthesized by solvothermal method , 2015 .

[25]  Yang Shen,et al.  Topological‐Structure Modulated Polymer Nanocomposites Exhibiting Highly Enhanced Dielectric Strength and Energy Density , 2014 .

[26]  H. Sodano,et al.  Relationship between BaTiO₃ nanowire aspect ratio and the dielectric permittivity of nanocomposites. , 2014, ACS applied materials & interfaces.

[27]  H. Ploehn,et al.  Polymers Containing Highly Polarizable Conjugated Side Chains as High‐Performance All‐Organic Nanodielectric Materials , 2013 .

[28]  Z. Dang,et al.  Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage , 2013, Advanced materials.

[29]  Suppression of energy dissipation and enhancement of breakdown strength in ferroelectric polymer–graphene percolative composites , 2013 .

[30]  Xingyi Huang,et al.  Fluoro-Polymer@BaTiO3 Hybrid Nanoparticles Prepared via RAFT Polymerization: Toward Ferroelectric Polymer Nanocomposites with High Dielectric Constant and Low Dielectric Loss for Energy Storage Application , 2013 .

[31]  Haixiong Tang,et al.  Synthesis of High Aspect Ratio BaTiO3 Nanowires for High Energy Density Nanocomposite Capacitors , 2013 .

[32]  Qing Wang,et al.  High-temperature poly(phthalazinone ether ketone) thin films for dielectric energy storage. , 2010, ACS applied materials & interfaces.

[33]  Hui Wu,et al.  High Tc in Electrospun BaTiO3 Nanofibers , 2009 .

[34]  M. Stanley Whittingham,et al.  Materials Challenges Facing Electrical Energy Storage , 2008 .

[35]  W. Sigmund,et al.  Synthesis of barium titanate (BaTiO3) nanofibers via electrospinning , 2005 .

[36]  David J. Jones,et al.  Temperature dependence of the electronic structure of oxides: {MgO}, {MgAl} , 1990 .