Numerical analysis of free vibrations of laminated composite conical and cylindrical shells

A numerical study on the free vibration analysis for laminated conical and cylindrical shell is presented. The analysis is carried out using Love's first approximation thin shell theory and solved using discrete singular convolution (DSC) method. Numerical results in free vibrations of laminated conical and cylindrical shells are presented graphically for different geometric and material parameters. Free vibrations of isotropic cylindrical shells and annular plates are treated as special cases. The effects of circumferential wave number, number of layers on frequencies characteristics are also discussed. The numerical results show that the present method is quite easy to implement, accurate and efficient for the problems considered.

[1]  Y. Xiang,et al.  DSC analysis of free-edged beams by an iteratively matched boundary method , 2005 .

[2]  Yang Xiang,et al.  Discrete singular convolution and its application to the analysis of plates with internal supports. Part 2: Applications , 2002 .

[3]  G. Weia,et al.  Institutional Knowledge at Singapore Management University The Determination of Natural Frequencies of Rectangular Plates with Mixed Boundary Conditions by Discrete Singular Convolution , 2001 .

[4]  Sritawat Kitipornchai,et al.  EFFECTS OF SUBTENDED AND VERTEX ANGLES ON THE FREE VIBRATION OF OPEN CONICAL SHELL PANELS: A CONICAL CO-ORDINATE APPROACH , 1999 .

[5]  Yang Xiang,et al.  Discrete singular convolution for the prediction of high frequency vibration of plates , 2002 .

[6]  K. M. Liew,et al.  Free vibration analysis of conical shells via the element-free kp-Ritz method , 2005 .

[7]  G. Wei,et al.  VIBRATION ANALYSIS BY DISCRETE SINGULAR CONVOLUTION , 2001 .

[8]  K. M. Liew,et al.  A pb-2 Ritz Formulation for Flexural Vibration of Shallow Cylindrical Shells of Rectangular Planform , 1994 .

[9]  G. Wei Discrete singular convolution for beam analysis , 2001 .

[10]  L. Hua Frequency characteristics of a rotating truncated circular layered conical shell , 2000 .

[11]  Decheng Wan,et al.  Numerical solution of incompressible flows by discrete singular convolution , 2002 .

[12]  N. Ganesan,et al.  Vibration analysis of thick composite clamped conical shells of varying thickness , 1992 .

[13]  K. M. Liew,et al.  Vibration of perforated doubly-curved shallow shells with rounded corners , 1994 .

[14]  Yang Xiang,et al.  The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution , 2001 .

[15]  Guo-Wei Wei,et al.  Discrete singular convolution for the sine-Gordon equation , 2000 .

[16]  A. E. H. Love,et al.  The Small Free Vibrations and Deformation of a Thin Elastic Shell , 1887 .

[17]  L. Tong Free vibration of laminated conical shells including transverse shear deformation , 1994 .

[18]  Chang Shu,et al.  An efficient approach for free vibration analysis of conical shells , 1996 .

[19]  Yang Xiang,et al.  Plate vibration under irregular internal supports , 2002 .

[20]  C. W. Bert,et al.  Unsymmetric free vibrations of orthotropic sandwich shells of revolution. , 1967 .

[21]  Chang Shu,et al.  FREE VIBRATION ANALYSIS OF COMPOSITE LAMINATED CONICAL SHELLS BY GENERALIZED DIFFERENTIAL QUADRATURE , 1996 .

[22]  W. Soedel Vibrations of shells and plates , 1981 .

[23]  G. Wei,et al.  Wavelets generated by using discrete singular convolution kernels , 2000 .

[24]  K. M. Liew,et al.  Effects of initial twist and thickness variation on the vibration behaviour of shallow conical shells , 1995 .

[25]  C. H. Wu,et al.  Asymptotic differential quadrature solutions for the free vibration of laminated conical shells , 2000 .

[26]  Yang Xiang,et al.  A NOVEL APPROACH FOR THE ANALYSIS OF HIGH-FREQUENCY VIBRATIONS , 2002 .

[27]  K. Lam,et al.  Analysis of rotating laminated cylindrical shells by different thin shell theories , 1995 .

[28]  Guo-Wei Wei,et al.  Solving quantum eigenvalue problems by discrete singular convolution , 2000 .

[29]  Guo-Wei Wei,et al.  Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates , 2004 .

[30]  X. Zhao,et al.  Vibration of Axially Loaded Rotating Cross-Ply Laminated Cylindrical Shells via Ritz Method , 2002 .

[31]  A. Leissa,et al.  Vibration of shells , 1973 .

[32]  Gen Yamada,et al.  Natural frequencies of truncated conical shells , 1984 .

[33]  Yang Xiang,et al.  Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: Theory and algorithm , 2002 .

[34]  Liyong Tong,et al.  Free vibration of composite laminated conical shells , 1993 .

[35]  Charles W. Bert,et al.  Free Vibrational Analysis of Sandwich Conical Shells with Free Edges , 1970 .

[36]  K. M. Liew,et al.  Vibration of shallow conical shells with shear flexibility: A first-order theory , 1996 .

[37]  K. M. Liew,et al.  Vibration of cantilevered laminated composite shallow conical shells , 1998 .

[38]  K. Liew,et al.  Vibratory Characteristics of Cantilevered Rectangular Shallow Shells of Variable Thickness , 1994 .

[39]  Li Hua,et al.  Vibration analysis of a rotating truncated circular conical shell , 1997 .

[40]  Z. R. Li,et al.  DSC-Ritz method for high-mode frequency analysis of thick shallow shells , 2004 .

[41]  G. Wei,et al.  DSC ANALYSIS OF RECTANGULAR PLATES WITH NON-UNIFORM BOUNDARY CONDITIONS , 2002 .

[42]  Li Hua,et al.  Frequency analysis of rotating truncated circular orthotropic conical shells with different boundary conditions , 2000 .

[43]  Li Hua,et al.  The generalized differential quadrature method for frequency analysis of a rotating conical shell with initial pressure , 2000 .

[44]  K. M. Liew,et al.  Vibration Characteristics of Conical Shell Panels With Three-Dimensional Flexibility , 2000 .

[45]  Liyong Tong,et al.  Free vibration of orthotropic conical shells , 1993 .

[46]  Charles W. Bert,et al.  Composite Material Mechanics: Structural Mechanics , 1974 .

[47]  Chen Hao Chang,et al.  Vibrations of Conical Shells , 1981 .

[48]  Ömer Civalek,et al.  An efficient method for free vibration analysis of rotating truncated conical shells , 2006 .

[49]  Chang Shu,et al.  Free vibration analysis of laminated composite cylindrical shells by DQM , 1997 .

[50]  K. M. Liew,et al.  Free Vibration of Pretwisted, Cantilevered Composite Shallow Conical Shells , 1997 .

[51]  Gen Yamada,et al.  Free vibration of a conical shell with variable thickness , 1982 .

[52]  G. Wei,et al.  Conjugate filter approach for solving Burgers' equation , 2002 .

[53]  C. C. Yang On vibrations of orthotropic conical shells , 1974 .

[54]  Rakesh K. Kapania,et al.  A Review on the Analysis of Laminated Shells Virginia Polytechnic Institute and State University , 1989 .

[55]  Guo-Wei Wei,et al.  Discrete singular convolution for the solution of the Fokker–Planck equation , 1999 .

[56]  G. Wei,et al.  A new algorithm for solving some mechanical problems , 2001 .

[57]  Y. Xiang,et al.  On the missing modes when using the exact frequency relationship between Kirchhoff and Mindlin plates , 2005 .

[58]  K. M. Liew,et al.  Vibratory behaviour of shallow conical shells by a global Ritz formulation , 1995 .

[59]  Yang Xiang,et al.  DSC‐Ritz method for the free vibration analysis of Mindlin plates , 2005 .