Flexure-FET biosensor to break the fundamental sensitivity limits of nanobiosensors using nonlinear electromechanical coupling

In this article, we propose a Flexure-FET (flexure sensitive field effect transistor) ultrasensitive biosensor that utilizes the nonlinear electromechanical coupling to overcome the fundamental sensitivity limits of classical electrical or mechanical nanoscale biosensors. The stiffness of the suspended gate of Flexure-FET changes with the capture of the target biomolecules, and the corresponding change in the gate shape or deflection is reflected in the drain current of FET. The Flexure-FET is configured to operate such that the gate is biased near pull-in instability, and the FET-channel is biased in the subthreshold regime. In this coupled nonlinear operating mode, the sensitivity (S) of Flexure-FET with respect to the captured molecule density (Ns) is shown to be exponentially higher than that of any other electrical or mechanical biosensor. In other words, while , classical electrical or mechanical biosensors are limited to Sclassical ∼ γ3NS or γ4 ln(NS), where γi are sensor-specific constants. In addition, the proposed sensor can detect both charged and charge-neutral biomolecules, without requiring a reference electrode or any sophisticated instrumentation, making it a potential candidate for various low-cost, point-of-care applications.

[1]  Claudia Felser,et al.  Electronic structure of Pt based topological Heusler compounds with C1b structure and zero band gap , 2011 .

[2]  G. Chiu,et al.  Bifurcation-based mass sensing using piezoelectrically-actuated microcantilevers , 2011 .

[3]  M. Roukes,et al.  Comparative advantages of mechanical biosensors. , 2011, Nature nanotechnology.

[4]  Ricardo Garcia,et al.  Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. , 2010, Nature nanotechnology.

[5]  F. Keulen,et al.  Application of electrostatic pull-in instability on sensing adsorbate stiffness in nanomechanical resonators , 2010 .

[6]  Jeevak M. Parpia,et al.  Stress-based vapor sensing using resonant microbridges , 2010 .

[7]  Muhammad A. Alam,et al.  Theory of "Selectivity" of label-free nanobiosensors: A geometro-physical perspective. , 2010, Journal of applied physics.

[8]  Charles M. Lieber,et al.  Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. , 2010, Nano letters.

[9]  Renaud A. L. Vallée,et al.  In situ tuning the optical properties of a cavity by wrinkling , 2010 .

[10]  V. Laur,et al.  Magnetodielectric effect in trilayered Co65Fe35B20/PVDF/Co65Fe35B20 composite materials. Prediction and measurement for tunable microwave applications , 2010 .

[11]  Anja Boisen,et al.  Design & fabrication of cantilever array biosensors , 2009 .

[12]  B. Morgan Intermittent hypoxia: keeping it real. , 2009, Journal of applied physiology.

[13]  Sang-Myung Lee,et al.  Micro- and nanocantilever devices and systems for biomolecule detection. , 2009, Annual review of analytical chemistry.

[14]  Carlo Stefano Ragusa,et al.  One-dimensional/two-dimensional loss measurements up to high inductions , 2009 .

[15]  Harold G. Craighead,et al.  The relationship between material properties, device design, and the sensitivity of resonant mechanical sensors , 2009 .

[16]  S. Mifflin NO and CO have got to GO for enhanced chemoreceptor sympathoexcitation in heart failure. , 2008, Journal of applied physiology.

[17]  Muhammad A. Alam,et al.  Screening-limited response of nanobiosensors. , 2007, Nano letters.

[18]  P. E. D. Prampero Integrative physiology: facts and theories , 2008, European Journal of Applied Physiology.

[19]  Spring constant tuning of active atomic force microscope probes using electrostatic spring softening effect , 2007 .

[20]  I. Sakellis,et al.  Universal frequency-dependent ac conductivity of conducting polymer networks , 2007, 0805.2483.

[21]  S. Krylov Lyapunov exponents as a criterion for the dynamic pull-in instability of electrostatically actuated microstructures , 2007 .

[22]  H. Craighead Nanomechanical systems: measuring more than mass. , 2007, Nature nanotechnology.

[23]  Nicolas Abelé,et al.  Design and fabrication of suspended-gate MOSFETs for MEMS resonator, switch and memory applications , 2007 .

[24]  James R Heath,et al.  Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. , 2006, Journal of the American Chemical Society.

[25]  Javier Tamayo,et al.  Effect of the adsorbate stiffness on the resonance response of microcantilever sensors , 2006 .

[26]  W. Grange,et al.  Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA , 2006, Nature nanotechnology.

[27]  Javier Tamayo,et al.  Origin of the response of nanomechanical resonators to bacteria adsorption , 2006 .

[28]  C. Choy,et al.  Dielectric properties and abnormal C-V characteristics of Ba[sub 0.5]Sr[sub 0.5]TiO₃-Bi[sub 1.5]ZnNb[sub 1.5]O[sub 7] composite thin films grown on MgO (001) substrates by pulsed laser deposition , 2006 .

[29]  M. Ladisch,et al.  Anomalous resonance in a nanomechanical biosensor , 2006, Proceedings of the National Academy of Sciences.

[30]  K. Roy,et al.  Underlap DGMOS for digital-subthreshold operation , 2006, IEEE Transactions on Electron Devices.

[31]  A. J. Nijdam,et al.  Nanotechnologies for biomolecular detection and medical diagnostics. , 2006, Current opinion in chemical biology.

[32]  M. Roukes,et al.  Zeptogram-scale nanomechanical mass sensing. , 2005, Nano letters.

[33]  Robert A Klocke,et al.  Dead space: simplicity to complexity. , 2006, Journal of applied physiology.

[34]  R. Howe,et al.  A new nano-electro-mechanical field effect transistor (NEMFET) design for low-power electronics , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[35]  K. Boucart,et al.  Suspended-gate MOSFET: bringing new MEMS functionality into solid-state MOS transistor , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[36]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[37]  A. Joshua Wand,et al.  Self-contained high-pressure cell, apparatus, and procedure for the preparation of encapsulated proteins dissolved in low viscosity fluids for nuclear magnetic resonance spectroscopy , 2005 .

[38]  Thomas J Pohida,et al.  Direct detection and time-locked subsampling applied to pulsed electron paramagnetic resonance imaging. , 2005, The Review of scientific instruments.

[39]  J. Kang,et al.  Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers. , 2005, Biosensors & bioelectronics.

[40]  M. Blencowe Nanoelectromechanical systems , 2005, cond-mat/0502566.

[41]  S. Krylov,et al.  Pull-in Dynamics of an Elastic Beam Actuated by Continuously Distributed Electrostatic Force , 2004 .

[42]  M. Sepaniak,et al.  Cantilever transducers as a platform for chemical and biological sensors , 2004 .

[43]  Piet Bergveld,et al.  Thirty years of ISFETOLOGY ☆: What happened in the past 30 years and what may happen in the next 30 years , 2003 .

[44]  T. Thundat,et al.  Bioassay of prostate-specific antigen (PSA) using microcantilevers , 2001, Nature Biotechnology.

[45]  M. Roukes Nanoelectromechanical Systems , 2000, cond-mat/0008187.

[46]  N. Cozzarelli PNAS Early Edition. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[48]  H. Tilmans,et al.  Electrostatically driven vacuum-encapsulated polysilicon resonators part II. theory and performance , 1994 .

[49]  H. Nathanson,et al.  The resonant gate transistor , 1967 .