The Use of Archimedean Copulas to Model Portfolio Allocations

A copula is a means of generating an n-variate distribution function from an arbitrary set of n univariate distributions. For the class of portfolio allocators that are risk averse, we use the copula approach to identify a large set of n-variate asset return distributions such that the relative magnitudes of portfolio shares can be ordered according to the reversed hazard rate ordering of the n underlying univariate distributions. We also establish conditions under which first- and second-degree dominating shifts in one of the n underlying univariate distributions increase allocation to that asset. Our findings exploit separability properties possessed by the Archimedean family of copulas.

[1]  I. Olkin,et al.  Families of Multivariate Distributions , 1988 .

[2]  M. E. Johnson,et al.  A Family of Distributions for Modelling Non‐Elliptically Symmetric Multivariate Data , 1981 .

[3]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[4]  Mir M. Ali,et al.  A class of bivariate distri-butions including the bivariate logistic , 1978 .

[5]  Jack Meyer,et al.  The Effect on Optimal Portfolios of Changing the Return to a Risky Asset: The Case of Dependent Risky Returns , 1994 .

[6]  David X. Li On Default Correlation: A Copula Function Approach , 1999 .

[7]  C. Genest,et al.  The Joy of Copulas: Bivariate Distributions with Uniform Marginals , 1986 .

[8]  Alexander J. McNeil,et al.  Modelling Dependent Defaults: Asset Correlations Are Not Enough , 2001 .

[9]  P. McEntire Portfolio Theory for Independent Assets , 1984 .

[10]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[11]  MASAAKI KIJIMA THE GENERALIZED HARMONIC MEAN AND A PORTFOLIO PROBLEM WITH DEPENDENT ASSETS , 1997 .

[12]  S. Kotz,et al.  Correlation and dependence , 2001 .

[13]  M. J. Frank On the simultaneous associativity ofF(x, y) andx+y−F(x, y) , 1978 .

[14]  Moshe Shaked,et al.  Stochastic orders and their applications , 1994 .

[15]  Tae Kun Seo,et al.  The Effects of Shifts in a Return Distribution on Optimal Portfolios , 1990 .

[16]  Susan Athey,et al.  Characterizing Properties of Stochastic Objective Functions , 1998 .

[17]  M. J. Frank On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .

[18]  S. Douglas,et al.  Portfolio Response to a Shift in a Return Distribution: The Case of n-Dependent Assets , 1997 .

[19]  Masaaki Kijima,et al.  PORTFOLIO SELECTION PROBLEMS VIA THE BIVARIATE CHARACTERIZATION OF STOCHASTIC DOMINANCE RELATIONS , 1996 .

[20]  Isaac Meilijson,et al.  Demand for risky financial assets: A portfolio analysis , 1990 .

[21]  Roger B. Nelsen,et al.  Dependence and Order in Families of Archimedean Copulas , 1997 .

[22]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[23]  Robert T. Clemen,et al.  Copula Models for Aggregating Expert Opinions , 1996, Oper. Res..