Jet subdivision schemes on the k-regular complex
暂无分享,去创建一个
[1] Werner Stuetzle,et al. Spline Smoothing on Surfaces , 2003 .
[2] G. Umlauf. Analyzing the Characteristic Map of Triangular Subdivision Schemes , 2000 .
[3] Hartmut Prautzsch,et al. Freeform splines , 1997, Computer Aided Geometric Design.
[4] D. Levin,et al. Subdivision schemes in geometric modelling , 2002, Acta Numerica.
[5] M. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1978 .
[6] Peter Schröder,et al. Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.
[7] Hartmut Noltemeier,et al. Geometric Modelling , 1998, Computing Supplement.
[8] Jörg Peters,et al. The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.
[9] Ulrich Reif,et al. A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..
[10] Luiz Velho,et al. 4-8 Subdivision , 2001, Comput. Aided Geom. Des..
[11] J. Thorpe,et al. Lecture Notes on Elementary Topology and Geometry. , 1967 .
[12] Adhemar Bultheel,et al. A tangent subdivision scheme , 2006, TOGS.
[13] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[14] H. Prautzsch,et al. Triangular G2-Splines , 2000 .
[15] Thomas P. Yu,et al. Approximation order/smoothness tradeoff in Hermite subdivision schemes , 2001, SPIE Optics + Photonics.
[16] Leif Kobbelt,et al. √3-subdivision , 2000, SIGGRAPH.
[17] W. Stuetzle,et al. HIERARCHICAL COMPUTATION OF PL HARMONIC EMBEDDINGS , 1997 .
[18] Hartmut Prautzsch,et al. A G2-Subdivision Algorithm , 1996, Geometric Modelling.
[19] B. Han,et al. Face-based Hermite Subdivision Schemes , 2003 .
[20] W. Boothby. An introduction to differentiable manifolds and Riemannian geometry , 1975 .
[21] Denis Z orin. Smoothness of Stationary Subdivision on Irregular Meshes , 1998 .
[22] U. Reif. TURBS—Topologically Unrestricted Rational B-Splines , 1998 .
[23] M. Birkner,et al. Blow-up of semilinear PDE's at the critical dimension. A probabilistic approach , 2002 .
[24] Fujio Yamaguchi,et al. Computer-Aided Geometric Design , 2002, Springer Japan.
[25] Bin Han,et al. Multivariate refinable Hermite interpolant , 2003, Math. Comput..
[26] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[27] Bin Han,et al. Design of Hermite Subdivision Schemes Aided by Spectral Radius Optimization , 2003, SIAM J. Sci. Comput..
[28] T. Willmore. AN INTRODUCTION TO DIFFERENTIABLE MANIFOLDS AND RIEMANNIAN GEOMETRY (Second edition) , 1987 .
[29] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[30] Denis Zorin,et al. A Method for Analysis of C1 -Continuity of Subdivision Surfaces , 2000, SIAM J. Numer. Anal..
[31] Bin Han,et al. Multivariate Refinable Hermite Interpolants , 2003 .
[33] Ulrich Reif,et al. Degree estimates for Ck‐piecewise polynomial subdivision surfaces , 1999, Adv. Comput. Math..
[34] Hartmut Prautzsch,et al. Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..
[35] P. Hacking,et al. Riemann Surfaces , 2007 .
[36] Jean-Louis Merrien. A family of Hermite interpolants by bisection algorithms , 2005, Numerical Algorithms.
[37] J. Clark,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[38] Hans Hagen,et al. Curve and Surface Design , 1992 .
[39] Michael Taylor,et al. Partial Differential Equations I: Basic Theory , 1996 .
[40] S. Riemenschneider,et al. Convergence of Vector Subdivision Schemes in Sobolev Spaces , 2002 .
[41] U. Reif. A degree estimate for subdivision surfaces of higher regularity , 1996 .
[42] Bin Han,et al. Noninterpolatory Hermite subdivision schemes , 2004, Math. Comput..