Jet subdivision schemes on the k-regular complex

We introduce a new family of subdivision schemes called jet subdivision schemes. Jet subdivision schemes are a natural generalization of the commonly used subdivision schemes for free-form surface modeling. In an order r jet subdivision scheme, rth order Taylor expansions, or r-jets, of functions are the essential objects being generated in a coarse-to-fine fashion. Standard subdivision surface methods correspond to the case r=0. Just as the standard free-form subdivision surface schemes, jet subdivision schemes are based on combining (i) a symmetric subdivision scheme in the shift-invariant setting with (ii) an extraordinary vertex rule. We formulate the notions of stationarity, symmetry, and smoothness for jet subdivision schemes. We then extend some well-known results in the theory of subdivision surfaces to the setting of jet subdivision schemes.By incorporating high order data into the subdivision rules, jet subdivision schemes offer more degrees of freedom for the design of extraordinary vertex rules than do standard subdivision schemes. Using a simple 2-point stencil, we construct an order 1 jet subdivision scheme, which is interpolatory, C1 everywhere, and free from polar artifacts at extraordinary vertices of any valence. It is similar to the popular butterfly scheme, but unlike the butterfly scheme, it produces surfaces that can be explicitly parameterized by spline functions. In addition, our jet subdivision scheme allows for explicit control of gradient information on the resulting surface.We address the problem of constructing curvature continuous subdivision schemes at extraordinary vertices by giving an example of a 'flexible C2 scheme' for extraordinary vertex of valence k = 3. The stencils for this subdivision scheme coincide with those of the popular Loop scheme. We discuss the mathematical structure of this example of a C2 scheme.

[1]  Werner Stuetzle,et al.  Spline Smoothing on Surfaces , 2003 .

[2]  G. Umlauf Analyzing the Characteristic Map of Triangular Subdivision Schemes , 2000 .

[3]  Hartmut Prautzsch,et al.  Freeform splines , 1997, Computer Aided Geometric Design.

[4]  D. Levin,et al.  Subdivision schemes in geometric modelling , 2002, Acta Numerica.

[5]  M. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1978 .

[6]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[7]  Hartmut Noltemeier,et al.  Geometric Modelling , 1998, Computing Supplement.

[8]  Jörg Peters,et al.  The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.

[9]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[10]  Luiz Velho,et al.  4-8 Subdivision , 2001, Comput. Aided Geom. Des..

[11]  J. Thorpe,et al.  Lecture Notes on Elementary Topology and Geometry. , 1967 .

[12]  Adhemar Bultheel,et al.  A tangent subdivision scheme , 2006, TOGS.

[13]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[14]  H. Prautzsch,et al.  Triangular G2-Splines , 2000 .

[15]  Thomas P. Yu,et al.  Approximation order/smoothness tradeoff in Hermite subdivision schemes , 2001, SPIE Optics + Photonics.

[16]  Leif Kobbelt,et al.  √3-subdivision , 2000, SIGGRAPH.

[17]  W. Stuetzle,et al.  HIERARCHICAL COMPUTATION OF PL HARMONIC EMBEDDINGS , 1997 .

[18]  Hartmut Prautzsch,et al.  A G2-Subdivision Algorithm , 1996, Geometric Modelling.

[19]  B. Han,et al.  Face-based Hermite Subdivision Schemes , 2003 .

[20]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[21]  Denis Z orin Smoothness of Stationary Subdivision on Irregular Meshes , 1998 .

[22]  U. Reif TURBS—Topologically Unrestricted Rational B-Splines , 1998 .

[23]  M. Birkner,et al.  Blow-up of semilinear PDE's at the critical dimension. A probabilistic approach , 2002 .

[24]  Fujio Yamaguchi,et al.  Computer-Aided Geometric Design , 2002, Springer Japan.

[25]  Bin Han,et al.  Multivariate refinable Hermite interpolant , 2003, Math. Comput..

[26]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[27]  Bin Han,et al.  Design of Hermite Subdivision Schemes Aided by Spectral Radius Optimization , 2003, SIAM J. Sci. Comput..

[28]  T. Willmore AN INTRODUCTION TO DIFFERENTIABLE MANIFOLDS AND RIEMANNIAN GEOMETRY (Second edition) , 1987 .

[29]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[30]  Denis Zorin,et al.  A Method for Analysis of C1 -Continuity of Subdivision Surfaces , 2000, SIAM J. Numer. Anal..

[31]  Bin Han,et al.  Multivariate Refinable Hermite Interpolants , 2003 .

[33]  Ulrich Reif,et al.  Degree estimates for Ck‐piecewise polynomial subdivision surfaces , 1999, Adv. Comput. Math..

[34]  Hartmut Prautzsch,et al.  Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..

[35]  P. Hacking,et al.  Riemann Surfaces , 2007 .

[36]  Jean-Louis Merrien A family of Hermite interpolants by bisection algorithms , 2005, Numerical Algorithms.

[37]  J. Clark,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[38]  Hans Hagen,et al.  Curve and Surface Design , 1992 .

[39]  Michael Taylor,et al.  Partial Differential Equations I: Basic Theory , 1996 .

[40]  S. Riemenschneider,et al.  Convergence of Vector Subdivision Schemes in Sobolev Spaces , 2002 .

[41]  U. Reif A degree estimate for subdivision surfaces of higher regularity , 1996 .

[42]  Bin Han,et al.  Noninterpolatory Hermite subdivision schemes , 2004, Math. Comput..