Skin-Effect Self-Heating in Air-Suspended RF MEMS Transmission-Line Structures

Air-suspension of transmission-line structures using microelectromechanical systems (MEMS) technology provides the effective means to suppress substrate losses for radio-frequency (RF) signals. However, heating of these lines augmented by skin effects can be a major concern for RF MEMS reliability. To understand this phenomenon, a thermal energy transport model is developed in a simple analytical form. The model accounts for skin effects that cause Joule heating to be localized near the surface of the RF transmission line. Here, the model is validated through experimental data by measuring the temperature rise in an air-suspended MEMS coplanar waveguide (CPW). For this measurement, a new experimental methodology is also developed allowing direct current (dc) electrical resistance thermometry to be adopted in an RF setup. The modeling and experimental work presented in this paper allow us to provide design rules for preventing thermal and structural failures unique to the RF operation of suspended MEMS transmission-line components. For example, increasing the thickness from 1 to 3 mum for a typical transmission line design enhances power handling from 5 to 125 W at 20 GHz, 3.3 to 80 W at 50 GHz, and 2.3 to 56 W at 100 GHz (a 25-fold increase in RF power handling)

[1]  Gabriel M. Rebeiz,et al.  A 10-50 GHz micromachined directional coupler , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[2]  Jiwei Jiao,et al.  A grounded coplanar waveguide with a metallized silicon cavity fabricated by front-surface-only processes , 2004 .

[3]  Gabriel M. Rebeiz,et al.  Submillimeter-wave antennas on thin membranes , 1987 .

[4]  Z. Wang,et al.  A preconditioner for hybrid matrices arising in RF MEMS switch analysis , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[5]  Juergen Seidel,et al.  Monolithic integration of RF-MEMS and semiconductor devices for the K-band , 2003, SPIE MOEMS-MEMS.

[6]  J.L. Volakis,et al.  Fully integrated electrothermal multidomain modeling of RF MEMS switches , 2003, IEEE Microwave and Wireless Components Letters.

[7]  K. Saitou,et al.  Skin effect aggregated heating in RF MEMS suspended structures , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[8]  Gabriel M. Rebeiz,et al.  Planar millimeter-wave microstrip lumped elements using micro-machining techniques , 1994, 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4).

[9]  J. Semancik 4-Wire Measurement Like a test bench in your PC, data acquisition cards can now handle multiquadrant operation and four-wire measurement, offering versatile test options that ensure that you get accurate readings , 2001 .

[10]  Tamotsu Nishino,et al.  Simultaneous implementation of various RF passives using a novel RF MEMS process module and metallized air cavity , 2005 .

[11]  P. Pons,et al.  Power capabilities of RF MEMS , 2004, 2004 24th International Conference on Microelectronics (IEEE Cat. No.04TH8716).

[12]  J.-P. Raskin,et al.  A novel parametric-effect MEMS amplifier , 2000, Journal of Microelectromechanical Systems.

[13]  D. Peroulis,et al.  High-power MEMS varactors and impedance tuners for millimeter-wave applications , 2005, IEEE Transactions on Microwave Theory and Techniques.

[14]  Gabriel M. Rebeiz,et al.  Micromachined circuits for millimeter- and sub-millimeter-wave applications , 1993, IEEE Antennas and Propagation Magazine.

[15]  Steven Brebels,et al.  RF-power: driver for electrostatic RF-MEMS devices , 2004 .

[16]  Gabriel M. Rebeiz,et al.  Micromachined devices for wireless communications , 1998, Proc. IEEE.

[17]  Gabriel M. Rebeiz,et al.  Steady state thermal analysis and high-power reliability considerations of RF MEMS capacitive switches , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[18]  John L. Volakis,et al.  Full-wave electromagnetic and thermal modeling for the prediction of heat-dissipation-induced RF-MEMS switch failure , 2005 .

[19]  Jung-Chih Chiao,et al.  MEMS reconfigurable Vee antenna , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[20]  Gabriel M. Rebeiz,et al.  Distributed MEMS true-time delay phase shifters and wide-band switches , 1998 .

[21]  Lawrence E. Larson,et al.  Micromachined microwave actuator (MIMAC) technology-a new tuning approach for microwave integrated circuits , 1991, IEEE 1991 Microwave and Millimeter-Wave Monolithic Circuits Symposium. Digest of Papers.

[22]  D. An,et al.  Hybrid ring coupler for W-band MMIC applications using MEMS technology , 2005, IEEE Microwave and Wireless Components Letters.

[23]  Linda P. B. Katehi,et al.  Low-loss monolithic transmission lines for submillimeter and terahertz frequency applications , 1991 .

[24]  S. Eshelman,et al.  Characteristics of micromachined switches at microwave frequencies , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[25]  Ai Qun Liu,et al.  A single-pole double-throw (SPDT) circuit using lateral metal-contact micromachined switches , 2005 .

[26]  Gabriel M. Rebeiz,et al.  The fabrication and performance of planar doped barrier diodes as 200 GHz subharmonically pumped mixers , 1994 .

[27]  Gabriel M. Rebeiz,et al.  W-band microshield low-pass filters , 1994, 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4).

[28]  A. Crunteanu,et al.  Dielectric less capacitive MEMS switches , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[29]  Linda P. B. Katehi,et al.  Membrane technology (MIST-T) applied to microstrip: a 33 GHz Wilkinson power divider , 1994, 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4).

[30]  Hyo J. Eom,et al.  TE-mode scattering from two junctions in H-plane waveguide , 1994 .

[31]  Euisik Yoon,et al.  Using MEMS Coupled Transmission Lines for Low Phase Noise , 2004 .

[32]  Michal Okoniewski,et al.  Analog tunable microwave phase shifters using RF MEMS , 2004, 2004 10th International Symposium on Antenna Technology and Applied Electromagnetics and URSI Conference.

[33]  Liu Litian Analysis and optimization of a side pull-down electrodes controlled MEMS varactor , 2005 .

[34]  Gabriel M. Rebeiz,et al.  Study of a novel planar transmission line , 1991, 1991 IEEE MTT-S International Microwave Symposium Digest.

[35]  Youngwoo Kwon,et al.  Low-loss analog and digital micromachined impedance tuners at the Ka-band , 2001 .

[36]  Gabriel M. Rebeiz,et al.  Micromachined high-Q resonators, low-loss diplexers, and low phase-noise oscillators for a 28 GHz front-end , 1999, RAWCON 99. 1999 IEEE Radio and Wireless Conference (Cat. No.99EX292).

[37]  Y. Kaneko,et al.  High-reliability, high-performance RF micromachined switch using liquid metal , 2005, Journal of Microelectromechanical Systems.

[38]  Horace Lamb,et al.  XIII. On electrical motions in a spherical conductor , 1883, Philosophical Transactions of the Royal Society of London.

[39]  G.M. Rebeiz,et al.  A new class of bandpass frequency selective structures , 2003, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450).

[40]  A. Yu,et al.  Micromachined DC contact capacitive switch on low-resistivity silicon substrate , 2006 .

[41]  Y. Rahmat-Samii,et al.  MEMS enabled reconfigurable frequency selective surfaces: design, simulation, fabrication, and measurement , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[42]  Eric Beyne,et al.  MEMS for wireless communications: ‘from RF-MEMS components to RF-MEMS-SiP’ , 2003 .

[43]  John L. Volakis,et al.  Integrated electrothermal modeling of RF MEMS switches for improved power handling capability , 2003, 2003 IEEE Topical Conference on Wireless Communication Technology.

[44]  P. Ghate,et al.  Electromigration‐Induced Failures in, and Microstructure and Resistivity of, Sputtered Gold Films , 1972 .

[45]  Pierre Blondy,et al.  Tunable rf MEMS resonators and filters , 2001, Symposium on Design, Test, Integration, and Packaging of MEMS/MOEMS.

[46]  G.M. Rebeiz,et al.  A low-voltage high contact force RF-MEMS switch , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[47]  D. Peroulis,et al.  Electro/thermal measurements of RF MEMS capacitive switches , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[48]  Euisik Yoon,et al.  A 13GHz CMOS distributed oscillator using MEMS coupled transmission lines for low phase noise , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[49]  Tayfun Akin,et al.  RF MEMS adjustable impedance matching network and adjustable power divider , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[50]  Lingpeng Guan,et al.  A fully integrated SOI RF MEMS technology for system-on-a-chip applications , 2006, IEEE Transactions on Electron Devices.