Spherical‐earth Fréchet sensitivity kernels

We outline a method that enables the efficient computation of exact Frechet sensitivity kernels for a non-gravitating 3-D spherical earth model. The crux of the method is a 2-D weak formulation for determining the 3-D elastodynamic response of the earth model to both a moment-tensor and a point-force source. The sources are decomposed into their monopole, dipole and quadrupole constituents, with known azimuthal radiation patterns. The full 3-D response and, therefore, the 3-D waveform sensitivity kernel for an arbitrary source–receiver geometry, can be reconstructed from a series of six independent 2-D solutions, which may be obtained using a spectral-element or other mesh-based numerical method on a 2-D, planar, semicircular domain. This divide-and-conquer, 3-D to 2-D reduction strategy can be used to compute sensitivity kernels for any seismic phase, including grazing and diffracted waves, at relatively low computational cost.

[1]  Jie Shen,et al.  An Efficient Spectral-Projection Method for the Navier-Stokes Equations in Cylindrical Geometries , 2002 .

[2]  D. Komatitsch,et al.  Wave propagation near a fluid-solid interface : A spectral-element approach , 2000 .

[3]  R. Hilst,et al.  Compositional stratification in the deep mantle , 1999, Science.

[4]  F. A. Dahlen,et al.  The Effect of A General Aspherical Perturbation on the Free Oscillations of the Earth , 1978 .

[5]  L. Wen,et al.  Seismic velocity structure in the Earth's outer core , 2005 .

[6]  Marta Woodward,et al.  Wave-equation tomography , 1992 .

[7]  J. Tromp,et al.  Joint inversion of normal mode and body wave data for inner core anisotropy 2. Possible complexities , 2002 .

[8]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[9]  Jean-Pierre Vilotte,et al.  Application of the spectral‐element method to the axisymmetric Navier–Stokes equation , 2004 .

[10]  Heiner Igel,et al.  SH-wave propagation in the whole mantle using high-order finite differences , 1995 .

[11]  Timothy Nigel Phillips,et al.  Spectral element methods for axisymmetric Stokes problems , 2000 .

[12]  3-D Sensitivity Kernels for Surface Wave Observables , 2002 .

[13]  Kim B. Olsen,et al.  Frechet Kernels for Imaging Regional Earth Structure Based on Three-Dimensional Reference Models , 2005 .

[14]  Emmanuel Chaljub,et al.  Sensitivity of SS precursors to topography on the upper‐mantle 660‐km discontinuity , 1997 .

[15]  J. Tromp,et al.  Theoretical Global Seismology , 1998 .

[16]  Guust Nolet,et al.  Three‐dimensional sensitivity kernels for surface wave observables , 2004 .

[17]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[18]  A. Dziewoński,et al.  Simultaneous inversion for mantle shear velocity and topography of transition zone discontinuities , 2001 .

[19]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[20]  F. A. Dahlen,et al.  Finite-frequency sensitivity kernels for boundary topography perturbations , 2004 .

[21]  Pau Klein,et al.  San Francisco, California , 2007 .

[22]  Lars Stixrude,et al.  Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale , 2000 .

[23]  F. Dahlen,et al.  Fréchet kernels for body-wave amplitudes , 2001 .

[24]  J. Tromp,et al.  Joint inversion of normal mode and body wave data for inner core anisotropy 1. Laterally homogeneous anisotropy , 2002 .

[25]  A. Davaille,et al.  Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle , 1999, Nature.

[26]  Alexandre Fournier,et al.  A two‐dimensional spectral‐element method for computing spherical‐earth seismograms – I. Moment‐tensor source , 2007 .

[27]  Heiner Igel,et al.  P‐SV wave propagation in the Earth's mantle using finite differences: Application to heterogeneous lowermost mantle structure , 1996 .

[28]  T. Lay,et al.  Finite frequency tomography of D″ shear velocity heterogeneity beneath the Caribbean , 2004 .

[29]  Jie Shen,et al.  An Efficient Spectral-Projection Method for the Navier–Stokes Equations in Cylindrical Geometries: I. Axisymmetric Cases , 1998 .

[30]  J. Tromp,et al.  Three-dimensional structure of the African superplume from waveform modelling , 2005 .

[31]  S. Chevrot,et al.  Three Dimensional Sensitivity Kernels for Shear Wave Splitting in Transverse Isotropic Media , 2002 .

[32]  Bj Wood,et al.  The State of the Planet: Frontiers and Challenges in Geophysics , 2004 .

[33]  Qinya Liu,et al.  Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels , 2004 .

[34]  A. Tarantola,et al.  Two‐dimensional nonlinear inversion of seismic waveforms: Numerical results , 1986 .

[35]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[36]  Barbara Romanowicz,et al.  Fundamentals of Seismic Wave Propagation , 2005 .

[37]  Guust Nolet,et al.  Three-dimensional waveform sensitivity kernels , 1998 .

[38]  T. Lay,et al.  Partial melting in a thermo-chemical boundary layer at the base of the mantle , 2004 .

[39]  Gerard T. Schuster,et al.  Wave-equation traveltime inversion , 1991 .

[40]  Guust Nolet,et al.  Fréchet kernels for finite‐frequency traveltimes—II. Examples , 2000 .

[41]  Y. Capdeville An efficient Born normal mode method to compute sensitivity kernels and synthetic seismograms in the Earth , 2005 .

[42]  M. Manga,et al.  Seismological constraints on a possible plume root at the core–mantle boundary , 2005, Nature.

[43]  Thomas H. Jordan,et al.  Three‐dimensional Fréchet differential kernels for seismicdelay times , 2000 .

[44]  Emmanuel Chaljub,et al.  Spectral element modelling of three-dimensional wave propagation in a self-gravitating Earth with an arbitrarily stratified outer core , 2003, physics/0308102.

[45]  E. Engdahl,et al.  Finite-Frequency Tomography Reveals a Variety of Plumes in the Mantle , 2004, Science.

[46]  Monique Dauge,et al.  Spectral Methods for Axisymmetric Domains , 1999 .

[47]  B. Romanowicz,et al.  3D effects of sharp boundaries at the borders of the African and Pacific Superplumes: Observation and modeling , 2005 .

[48]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .

[49]  Jean-Pierre Vilotte,et al.  A Fourier-spectral element algorithm for thermal convection in rotating axisymmetric containers , 2005 .

[50]  C. Chapman Fundamentals of Seismic Wave Propagation: Frontmatter , 2004 .

[51]  Guust Nolet,et al.  Fréchet kernels for finite-frequency traveltimes—I. Theory , 2000 .