Spherical‐earth Fréchet sensitivity kernels
暂无分享,去创建一个
[1] Jie Shen,et al. An Efficient Spectral-Projection Method for the Navier-Stokes Equations in Cylindrical Geometries , 2002 .
[2] D. Komatitsch,et al. Wave propagation near a fluid-solid interface : A spectral-element approach , 2000 .
[3] R. Hilst,et al. Compositional stratification in the deep mantle , 1999, Science.
[4] F. A. Dahlen,et al. The Effect of A General Aspherical Perturbation on the Free Oscillations of the Earth , 1978 .
[5] L. Wen,et al. Seismic velocity structure in the Earth's outer core , 2005 .
[6] Marta Woodward,et al. Wave-equation tomography , 1992 .
[7] J. Tromp,et al. Joint inversion of normal mode and body wave data for inner core anisotropy 2. Possible complexities , 2002 .
[8] A. Tarantola. Inversion of seismic reflection data in the acoustic approximation , 1984 .
[9] Jean-Pierre Vilotte,et al. Application of the spectral‐element method to the axisymmetric Navier–Stokes equation , 2004 .
[10] Heiner Igel,et al. SH-wave propagation in the whole mantle using high-order finite differences , 1995 .
[11] Timothy Nigel Phillips,et al. Spectral element methods for axisymmetric Stokes problems , 2000 .
[12] 3-D Sensitivity Kernels for Surface Wave Observables , 2002 .
[13] Kim B. Olsen,et al. Frechet Kernels for Imaging Regional Earth Structure Based on Three-Dimensional Reference Models , 2005 .
[14] Emmanuel Chaljub,et al. Sensitivity of SS precursors to topography on the upper‐mantle 660‐km discontinuity , 1997 .
[15] J. Tromp,et al. Theoretical Global Seismology , 1998 .
[16] Guust Nolet,et al. Three‐dimensional sensitivity kernels for surface wave observables , 2004 .
[17] Paul G. Richards,et al. Quantitative Seismology: Theory and Methods , 1980 .
[18] A. Dziewoński,et al. Simultaneous inversion for mantle shear velocity and topography of transition zone discontinuities , 2001 .
[19] G. Karniadakis,et al. Spectral/hp Element Methods for CFD , 1999 .
[20] F. A. Dahlen,et al. Finite-frequency sensitivity kernels for boundary topography perturbations , 2004 .
[21] Pau Klein,et al. San Francisco, California , 2007 .
[22] Lars Stixrude,et al. Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale , 2000 .
[23] F. Dahlen,et al. Fréchet kernels for body-wave amplitudes , 2001 .
[24] J. Tromp,et al. Joint inversion of normal mode and body wave data for inner core anisotropy 1. Laterally homogeneous anisotropy , 2002 .
[25] A. Davaille,et al. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle , 1999, Nature.
[26] Alexandre Fournier,et al. A two‐dimensional spectral‐element method for computing spherical‐earth seismograms – I. Moment‐tensor source , 2007 .
[27] Heiner Igel,et al. P‐SV wave propagation in the Earth's mantle using finite differences: Application to heterogeneous lowermost mantle structure , 1996 .
[28] T. Lay,et al. Finite frequency tomography of D″ shear velocity heterogeneity beneath the Caribbean , 2004 .
[29] Jie Shen,et al. An Efficient Spectral-Projection Method for the Navier–Stokes Equations in Cylindrical Geometries: I. Axisymmetric Cases , 1998 .
[30] J. Tromp,et al. Three-dimensional structure of the African superplume from waveform modelling , 2005 .
[31] S. Chevrot,et al. Three Dimensional Sensitivity Kernels for Shear Wave Splitting in Transverse Isotropic Media , 2002 .
[32] Bj Wood,et al. The State of the Planet: Frontiers and Challenges in Geophysics , 2004 .
[33] Qinya Liu,et al. Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels , 2004 .
[34] A. Tarantola,et al. Two‐dimensional nonlinear inversion of seismic waveforms: Numerical results , 1986 .
[35] D. L. Anderson,et al. Preliminary reference earth model , 1981 .
[36] Barbara Romanowicz,et al. Fundamentals of Seismic Wave Propagation , 2005 .
[37] Guust Nolet,et al. Three-dimensional waveform sensitivity kernels , 1998 .
[38] T. Lay,et al. Partial melting in a thermo-chemical boundary layer at the base of the mantle , 2004 .
[39] Gerard T. Schuster,et al. Wave-equation traveltime inversion , 1991 .
[40] Guust Nolet,et al. Fréchet kernels for finite‐frequency traveltimes—II. Examples , 2000 .
[41] Y. Capdeville. An efficient Born normal mode method to compute sensitivity kernels and synthetic seismograms in the Earth , 2005 .
[42] M. Manga,et al. Seismological constraints on a possible plume root at the core–mantle boundary , 2005, Nature.
[43] Thomas H. Jordan,et al. Three‐dimensional Fréchet differential kernels for seismicdelay times , 2000 .
[44] Emmanuel Chaljub,et al. Spectral element modelling of three-dimensional wave propagation in a self-gravitating Earth with an arbitrarily stratified outer core , 2003, physics/0308102.
[45] E. Engdahl,et al. Finite-Frequency Tomography Reveals a Variety of Plumes in the Mantle , 2004, Science.
[46] Monique Dauge,et al. Spectral Methods for Axisymmetric Domains , 1999 .
[47] B. Romanowicz,et al. 3D effects of sharp boundaries at the borders of the African and Pacific Superplumes: Observation and modeling , 2005 .
[48] D. Komatitsch,et al. Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .
[49] Jean-Pierre Vilotte,et al. A Fourier-spectral element algorithm for thermal convection in rotating axisymmetric containers , 2005 .
[50] C. Chapman. Fundamentals of Seismic Wave Propagation: Frontmatter , 2004 .
[51] Guust Nolet,et al. Fréchet kernels for finite-frequency traveltimes—I. Theory , 2000 .