Semiconductor nanowire lasers

Semiconductor nanowires (or other wire-like nanostructures, including nanoribbons and nanobelts) synthesized by bottom-up chemical growth show single-crystalline structures, excellent geometric uniformities, subwavelength transverse dimensions, and relatively high refractive indices, making these one-dimensional structures ideal optical nanowaveguides with tight optical confinement and low scattering loss. When properly pumped by optical or electrical means, lasing oscillation can be readily established inside these high-gain active nanowires with feedback from endface reflection or near-field coupling effects, making it possible to realize nanowire lasers with miniature sizes and high flexibilities. Also, the wide-range material availability bestows the semiconductor nanowire with lasing wavelength selectable within a wide spectral range from ultraviolet (UV) to near infrared (IR). As nanoscale coherent light sources, in recent years, nanowire lasers have been attracting intensive attention for both fundamental research and technological applications ranging from optical sensing, signal processing, and on-chip communications to quantum optics. Here, we present a review of the status and perspectives of semiconductor nanowire lasers, with a particular emphasis on their optical characteristics categorized in two groups: (1) waveguiding related properties in Section 3, which includes waveguide modes, near-field coupling, endface reflection, substrate-induced effects, and nanowire microcavities, and (2) optically pumped semiconductor nanowire lasers in Section 4, starting from principles and basic types of UV, visible, and near-IR nanowire lasers relying on Fabry–Perot cavities, to advanced configurations including wavelength-tunable, single-mode operated, fiber-coupled, and metal-incorporated nanowire lasing structures for more possibilities. In addition, the material aspects of semiconductor nanowires, including nanowire synthesis and electrically driven nanowire lasers, are briefly reviewed in Sections 2 and 5, respectively. Finally, in Section 6 we present a brief summary of semiconductor nanowire lasers regarding their current challenges and future opportunities.

[1]  David B. Bogy,et al.  Data storage: Heat-assisted magnetic recording , 2009 .

[2]  D. Magde,et al.  Exciton-Exciton Interaction in CdS, CdSe, and ZnO , 1970 .

[3]  P. D. Dapkus,et al.  Room‐temperature laser operation of quantum‐well Ga(1−x)AlxAs‐GaAs laser diodes grown by metalorganic chemical vapor deposition , 1978 .

[4]  E. Namdas,et al.  How to recognize lasing , 2009 .

[5]  Federico Capasso,et al.  Hybrid single-nanowire photonic crystal and microresonator structures. , 2006, Nano letters.

[6]  S. Aloni,et al.  Complete composition tunability of InGaN nanowires using a combinatorial approach. , 2007, Nature materials.

[7]  Ichiro Yamada,et al.  High-performance UV detector made of ultra-long ZnO bridging nanowires , 2009, Nanotechnology.

[8]  F. H. Nicoll,et al.  ULTRAVIOLET ZnO LASER PUMPED BY AN ELECTRON BEAM , 1966 .

[9]  Yang Jiang,et al.  Synthesis and Lasing Properties of Highly Ordered CdS Nanowire Arrays , 2007 .

[10]  Peidong Yang,et al.  Germanium Nanowire Growth via Simple Vapor Transport , 2000 .

[11]  Limin Tong,et al.  Modeling of evanescent coupling between two parallel optical nanowires. , 2007, Applied optics.

[12]  Jian-Gang Zhu,et al.  Magnetic tunnel junctions , 2006 .

[13]  L. Tong,et al.  Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity , 2009 .

[14]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[15]  Limin Tong,et al.  Assembly of silica nanowires on silica aerogels for microphotonic devices. , 2005, Nano letters.

[16]  Takashi Fukui,et al.  Observation of Microcavity Modes and Waveguides in InP Nanowires Fabricated by Selective-Area Metalorganic Vapor-Phase Epitaxy , 2007 .

[17]  Martin T. Hill,et al.  Status and prospects for metallic and plasmonic nano-lasers [Invited] , 2010 .

[18]  J. Robertson,et al.  Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties , 2007 .

[19]  S. Mao,et al.  Quantum efficiency of ZnO nanowire nanolasers , 2005 .

[20]  R. Agarwal,et al.  Variable temperature spectroscopy of as-grown and passivated CdS nanowire optical waveguide cavities. , 2011, The journal of physical chemistry. A.

[21]  Tianyou Zhai,et al.  ZnO and ZnS Nanostructures: Ultraviolet-Light Emitters, Lasers, and Sensors , 2009 .

[22]  Sheng Chu,et al.  Electrically pumped ultraviolet ZnO diode lasers on Si , 2008 .

[23]  L. Tong,et al.  Nanowires/microfiber hybrid structure multicolor laser. , 2009, Optics express.

[24]  Xiao Wei Sun,et al.  Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities , 2011 .

[25]  T. Fukui,et al.  Characterization of Fabry-Pérot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy , 2007 .

[26]  C. Klingshirn,et al.  Ordered, uniform-sized ZnO nanolaser arrays , 2007 .

[27]  Qiang Sun,et al.  Zinc Vacancy induced magnetism in ZnO thin films and nanowires , 2008 .

[28]  P. Eklund,et al.  Optical Properties of Rectangular Cross-sectional ZnS Nanowires , 2004 .

[29]  Room-temperature excitonic lasing from ZnO single nanobelts , 2004 .

[30]  K. Colbow Free-to-Bound and Bound-to-Bound Transitions in CdS , 1966 .

[31]  Chong-Xin Shan,et al.  Electrically pumped random lasers fabricated from ZnO nanowire arrays. , 2012, Nanoscale.

[32]  Yuhang Li,et al.  Mach-Zehnder interferometers assembled with optical microfibers or nanofibers. , 2008, Optics letters.

[33]  Marko Loncar,et al.  Ultra-high quality factor optical resonators based on semiconductor nanowires. , 2008, Optics express.

[34]  Prashanth C. Upadhya,et al.  The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires , 2010 .

[35]  J. Schlager,et al.  Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires , 2011 .

[36]  Pallab Bhattacharya,et al.  Room temperature ultralow threshold GaN nanowire polariton laser. , 2011, Physical review letters.

[37]  Peidong Yang,et al.  Dendritic nanowire ultraviolet laser array. , 2003, Journal of the American Chemical Society.

[38]  Takashi Fukui,et al.  Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy , 2005 .

[39]  W. E. Krag,et al.  SEMICONDUCTOR MASER OF GaAs , 1962 .

[40]  Peidong Yang,et al.  Semiconductor nanowire ring resonator laser. , 2006, Physical review letters.

[41]  Kelly P. Knutsen,et al.  Ultrafast Carrier Dynamics in Single ZnO Nanowire and Nanoribbon Lasers , 2004 .

[42]  Heinz Kalt,et al.  Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing , 2007 .

[43]  Xiangfeng Duan,et al.  Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires , 2001, Science.

[44]  M. Kaiser,et al.  Epitaxial growth of InP nanowires on germanium , 2004, Nature materials.

[45]  Marius Grundmann,et al.  Whispering gallery mode lasing in zinc oxide microwires , 2008 .

[46]  Federico Capasso,et al.  Optically pumped nanowire lasers: invited review , 2010 .

[47]  Raymond G. Beausoleil,et al.  Nanoelectronic and Nanophotonic Interconnect , 2008, Proceedings of the IEEE.

[48]  Silvija Gradecak,et al.  General synthesis of manganese-doped II-VI and III-V semiconductor nanowires. , 2005, Nano letters.

[49]  Ruibin Liu,et al.  Lasing mechanism of ZnO nanowires/nanobelts at room temperature. , 2006, The journal of physical chemistry. B.

[50]  Li-Min Tong,et al.  All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors. , 2009, Optics letters.

[51]  N. Holonyak,et al.  COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1−xPx) JUNCTIONS , 1962 .

[52]  Shui-Tong Lee,et al.  Composition tuning of room-temperature nanolasers , 2012 .

[53]  Guo‐zhen Yang,et al.  Stimulated emissions in aligned CdS nanowires at room temperature. , 2005, The journal of physical chemistry. B.

[54]  C. Ning,et al.  Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum. , 2009, Journal of the American Chemical Society.

[55]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[56]  A. Scherer,et al.  Low-threshold room-temperature lasing in bottom-up photonic crystal cavities formed by patterned III-V nanopillars , 2011, 69th Device Research Conference.

[57]  X. W. Sun,et al.  Ultraviolet amplified spontaneous emission from self-organized network of zinc oxide nanofibers , 2005 .

[58]  Min Qiu,et al.  Modeling endface output patterns of optical micro/nanofibers. , 2008, Optics express.

[59]  H. Gerritsen,et al.  Resonance enhancement of optical second harmonic generation in a ZnO nanowire , 2006 .

[60]  Yit‐Tsong Chen,et al.  Surface-enhanced Raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets. , 2005, Journal of the American Chemical Society.

[61]  Charles M. Lieber,et al.  GaN nanowire lasers with low lasing thresholds , 2005 .

[62]  K. Thonke,et al.  Lasing dynamics in single ZnO nanorods. , 2008, Optics express.

[63]  K Nakajima,et al.  Cavity formation on an optical nanofiber using focused ion beam milling technique. , 2011, Optics express.

[64]  G. Qin,et al.  Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes , 2011, 1103.1754.

[65]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[66]  S. T. Lee,et al.  Wavelength-tunable lasing in single-crystal CdS1−XSeX nanoribbons , 2007 .

[67]  Ruibin Liu,et al.  Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. , 2009, Nano letters.

[68]  J. I. Dijkhuis,et al.  Room-temperature laser emission of ZnO nanowires explained by many-body theory. , 2012, Physical review letters.

[69]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[70]  L. Tong,et al.  On-nanowire spatial band gap design for white light emission. , 2011, Nano letters.

[71]  Limin Tong,et al.  Demonstration of optical microfiber knot resonators , 2006 .

[72]  Seung-Man Yang,et al.  Nanowire-based single-cell endoscopy. , 2012, Nature nanotechnology.

[73]  Limin Tong,et al.  Optical microfibers and nanofibers: A tutorial , 2012 .

[74]  Wen-Feng Hsieh,et al.  Stimulated emission and lasing of random-growth oriented ZnO nanowires , 2005 .

[75]  R. Ma,et al.  Synthesis of High Quality n-type CdSe Nanobelts and Their Applications in Nanodevices , 2009 .

[76]  P. Yang,et al.  Cleaved-coupled nanowire lasers , 2013, Proceedings of the National Academy of Sciences.

[77]  Mengyan Shen,et al.  Optically pumped lasing of ZnO at room temperature , 1991 .

[78]  A. Pan,et al.  Color-tunable photoluminescence of alloyed CdS(x)Se(1-x) nanobelts. , 2005, Journal of the American Chemical Society.

[79]  Marius Grundmann,et al.  Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section. , 2004, Physical review letters.

[80]  Peidong Yang,et al.  Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy. , 2009, Journal of the American Chemical Society.

[81]  Xiang Zhang,et al.  Multiplexed and electrically modulated plasmon laser circuit. , 2012, Nano letters.

[82]  J. Zúñiga-Pérez,et al.  GaN microwires as optical microcavities: whispering gallery modes Vs Fabry-Perot modes. , 2012, Optics express.

[83]  L. Tong,et al.  Spatial bandgap engineering along single alloy nanowires. , 2011, Journal of the American Chemical Society.

[84]  Elias Vlieg,et al.  Twinning superlattices in indium phosphide nanowires , 2008, Nature.

[85]  Marko Loncar,et al.  Submicrometer diameter micropillar cavities with high quality factor and ultrasmall mode volume. , 2009, Optics letters.

[86]  U. Gösele,et al.  Growth peculiarities during vapor–liquid–solid growth of silicon nanowhiskers by electron-beam evaporation , 2006 .

[87]  D. Jena,et al.  Ultrathin CdSe nanowire field-effect transistors , 2006 .

[88]  Shui-Tong Lee,et al.  Lasing in ZnS nanowires grown on anodic aluminum oxide templates , 2004 .

[89]  C. Z. Ning,et al.  Electrical injection in longitudinal and coaxial heterostructure nanowires: a comparative study through a three-dimensional simulation. , 2008, Nano letters.

[90]  Bingqiang Cao,et al.  Whispering gallery modes in zinc oxide micro‐ and nanowires , 2010 .

[91]  L. Samuelson,et al.  Structural properties of 〈111〉B -oriented III–V nanowires , 2006, Nature materials.

[92]  W. Dumke,et al.  STIMULATED EMISSION OF RADIATION FROM GaAs p‐n JUNCTIONS , 1962 .

[93]  Zhong Lin Wang,et al.  Growth of anisotropic one-dimensional ZnS nanostructures , 2006 .

[94]  L. Chernyak,et al.  Electrically pumped waveguide lasing from ZnO nanowires. , 2011, Nature nanotechnology.

[95]  Xiangyang Ma,et al.  Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si. , 2009, Optics express.

[96]  V. Krishnamurthy,et al.  Theoretical Investigation of Metal Cladding for Nanowire and Cylindrical Micropost Lasers , 2008, IEEE Journal of Quantum Electronics.

[97]  Charles M. Lieber,et al.  Doping and Electrical Transport in Silicon Nanowires , 2000 .

[98]  Shui-Tong Lee,et al.  Room-temperature single nanoribbon lasers , 2004 .

[99]  Handong Sun,et al.  Exciton-Related Photoluminescence and Lasing in CdS Nanobelts , 2011 .

[100]  M. Sumetsky,et al.  Whispering-gallery-bottle microcavities: the three-dimensional etalon. , 2004, Optics letters.

[101]  L. Tong,et al.  Endface reflectivities of optical nanowires. , 2009, Optics express.

[102]  A. V. Maslov,et al.  Size reduction of a semiconductor nanowire laser by using metal coating , 2007, SPIE OPTO.

[103]  M. Brongersma,et al.  Optical coupling of deep-subwavelength semiconductor nanowires. , 2011, Nano letters.

[104]  Takashi Fukui,et al.  Single GaAs/GaAsP coaxial core-shell nanowire lasers. , 2009, Nano letters.

[105]  F. Bechstedt,et al.  Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons? , 2011, Physical review letters.

[106]  P. Kamat,et al.  A CdSe Nanowire/Quantum Dot Hybrid Architecture for Improving Solar Cell Performance , 2010 .

[107]  Chunxiang Xu,et al.  Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature , 2010 .

[108]  Y. Liu,et al.  Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires , 2011 .

[109]  Lars Samuelson,et al.  One-dimensional heterostructures in semiconductor nanowhiskers , 2002 .

[110]  Xiang Zhang,et al.  Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. , 2010, Nature materials.

[111]  Fang Qian,et al.  Microstadium single-nanowire laser , 2007 .

[112]  Federico Capasso,et al.  Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation , 2008 .

[113]  Peidong Yang,et al.  Controlled growth of Si nanowire arrays for device integration. , 2005, Nano letters.

[114]  Limin Tong,et al.  Single-nanowire single-mode laser. , 2011, Nano letters.

[115]  Samuel S. Mao,et al.  Nanolasers: Lasing from nanoscale quantum wires , 2004 .

[116]  Qing Yang,et al.  Compact optical short-pass filters based on microfibers. , 2008, Optics letters.

[117]  Extreme nonlinearities in InAs/InP nanowire gain media: the two-photon induced laser. , 2012, Optics express.

[118]  Ren-Min Ma,et al.  High-performance logic circuits constructed on single CdS nanowires. , 2007, Nano letters.

[119]  X. Duan,et al.  Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures. , 2012, Journal of the American Chemical Society.

[120]  Mikhail V. Maximov,et al.  Low threshold, large To injection laser emission from (InGa)As quantum dots , 1994 .

[121]  C. Hurwitz ELECTRON‐BEAM PUMPED LASERS OF CdSe AND CdS , 1966 .

[122]  Cun-Zheng Ning,et al.  Reflection of guided modes in a semiconductor nanowire laser , 2003 .

[123]  Zhenhua Ni,et al.  Stimulated emission of CdS nanowires grown by thermal evaporation , 2007 .

[124]  Luke F. Lester,et al.  Single-mode lasing of GaN nanowire-pairs , 2012 .

[125]  Byeong Yun Oh,et al.  Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes , 2006 .

[126]  Yi Cui,et al.  Ordered Vacancy Compounds and Nanotube Formation in CuInSe2-CdS Core-Shell Nanowires , 2007 .

[127]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[128]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[129]  Wei Zhou,et al.  Plasmonic bowtie nanolaser arrays. , 2012, Nano letters.

[130]  Lars Samuelson,et al.  Epitaxial Growth of Indium Arsenide Nanowires on Silicon Using Nucleation Templates Formed by Self‐Assembled Organic Coatings , 2007 .

[131]  Peter J. Pauzauskie,et al.  Tunable nanowire nonlinear optical probe , 2007, Nature.

[132]  Ming Ding,et al.  A Microfiber Cavity with Minimal-Volume Confinement , 2011 .

[133]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[134]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[135]  Shui-Tong Lee,et al.  High-quality CdS nanoribbons with lasing cavity , 2004 .

[136]  Xinsheng Peng,et al.  Fabrication and photoluminescence of ordered GaN nanowire arrays , 2001 .

[137]  D. Vanmaekelbergh,et al.  ZnO nanowire lasers. , 2011, Nanoscale.

[138]  Charles M Lieber,et al.  Lasing in single cadmium sulfide nanowire optical cavities. , 2005, Nano letters.

[139]  H. Shtrikman,et al.  Stacking-faults-free zinc Blende GaAs nanowires. , 2009, Nano letters.

[140]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[141]  C. Ning,et al.  Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate. , 2010, ACS nano.

[142]  Gennady Shvets,et al.  Plasmonic Nanolaser Using Epitaxially Grown Silver Film , 2012, Science.

[143]  Peidong Yang,et al.  Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides , 2003 .

[144]  E. Aydil,et al.  Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires , 2006 .

[145]  Daniel Lincot,et al.  Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition , 2006 .

[146]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[147]  Handong Sun,et al.  Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature. , 2010, Nano letters.

[148]  Linfeng Hu,et al.  Growth and Device Application of CdSe Nanostructures , 2012 .

[149]  S. Hersee,et al.  The controlled growth of GaN nanowires. , 2006, Nano letters.

[150]  Charles M. Lieber,et al.  Nanorod-Superconductor Composites: A Pathway to Materials with High Critical Current Densities , 1996, Science.

[151]  Chunxiang Xu,et al.  Response to “Comment on ‘Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities’” [Appl. Phys. Lett. 99, 136101 (2011)] , 2011 .

[152]  L. Maleki,et al.  Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes. , 1999, Optics letters.

[153]  R. Agarwal,et al.  Propagation loss spectroscopy on single nanowire active waveguides. , 2010, Nano letters.

[154]  H. Yan,et al.  ZnO Nanoribbon Microcavity Lasers , 2003 .

[155]  W. K. Chan,et al.  Influence of annealing on stimulated emission in ZnO nanorods , 2006 .

[156]  Y. Bando,et al.  One-dimensional CdS nanostructures: synthesis, properties, and applications. , 2010, Nanoscale.

[157]  Charles M. Lieber,et al.  Nanoscale Science and Technology: Building a Big Future from Small Things , 2003 .

[158]  L. Tong,et al.  Lasing of CdSe/SiO2 nanocables synthesized by the facile chemical vapor deposition method. , 2011, Nanoscale.

[159]  Xiangfeng Duan,et al.  Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires , 2000 .

[160]  M. Grundmann,et al.  Low-order optical whispering-gallery modes in hexagonal nanocavities (11 pages) , 2005 .

[161]  Charles M. Lieber,et al.  Semiconductor nanowire laser and nanowire waveguide electro-optic modulators , 2005 .

[162]  Mahendra K. Sunkara,et al.  Near-infrared semiconductor subwavelength-wire lasers , 2006 .

[163]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[164]  Jeremy B. Wright,et al.  Single-mode GaN nanowire lasers. , 2012, Optics express.

[165]  Heon-Jin Choi,et al.  Controlled growth of ZnO nanowires and their optical properties , 2002 .

[166]  Yong Ding,et al.  Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. , 2008, Nature materials.

[167]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[168]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[169]  Xiangfeng Duan,et al.  General Synthesis of Compound Semiconductor Nanowires , 2000 .

[170]  E. Bakkers,et al.  Increase of the photoluminescence intensity of InP nanowires by photoassisted surface passivation. , 2005, Journal of the American Chemical Society.

[171]  A. Susha,et al.  Quantum dot microdrop laser , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[172]  Pallab Bhattacharya,et al.  Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon , 2011 .

[173]  K. Ding,et al.  Trap-state whispering-gallery mode lasing from high-quality tin-doped CdS whiskers , 2011 .

[174]  David P. Norton,et al.  ZnO nanowire growth and devices , 2004 .

[175]  D. Vanmaekelbergh,et al.  Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire. , 2006, Nano letters.

[176]  Takashi Mukai,et al.  High‐power InGaN/GaN double‐heterostructure violet light emitting diodes , 1993 .

[177]  Shui-Tong Lee,et al.  Wavelength‐Controlled Lasing in ZnxCd1–xS Single‐Crystal Nanoribbons , 2005, Advanced materials.

[178]  Guang Zhu,et al.  Gallium nitride nanowire based nanogenerators and light-emitting diodes. , 2012, ACS nano.

[179]  L. Tong,et al.  Pigtailed CdSe nanoribbon ring laser , 2010, 2010 Photonics Global Conference.

[180]  Yuze Sun,et al.  Sensitive optical biosensors for unlabeled targets: a review. , 2008, Analytica chimica acta.

[181]  Elias Towe,et al.  Nanowire lasers with distributed-Bragg-reflector mirrors , 2006 .

[182]  J. Wiersig Hexagonal dielectric resonators and microcrystal lasers , 2002, physics/0210052.

[183]  Volker J. Sorger,et al.  Plasmon lasers: coherent light source at molecular scales , 2013 .

[184]  Chun-Hua Yan,et al.  ZnS nanoparticles doped with Cu(I) by controlling coordination and precipitation in aqueous solution , 1999 .

[185]  Matt Law,et al.  Nanoribbon Waveguides for Subwavelength Photonics Integration , 2004, Science.

[186]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[187]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[188]  Richard P. Feynman There's plenty of room at the bottom [data storage] , 1992, Journal of Microelectromechanical Systems.

[189]  Ming C. Wu,et al.  Subwavelength Metal-optic Semiconductor Nanopatch Lasers References and Links , 2022 .

[190]  Yiping Cui,et al.  Whispering gallery-mode lasing in ZnO microrods at room temperature , 2009 .

[191]  A. Pan,et al.  Fabrication and Red-Color Lasing of Individual Highly Uniform Single-Crystal CdSe Nanobelts , 2007 .

[192]  Shui-Tong Lee,et al.  Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons , 2007 .

[193]  Limin Tong,et al.  Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. , 2004, Optics express.

[194]  G. Visimberga,et al.  Mode structure of laser emission from ZnO Nanorods with one metal mirror , 2010 .

[195]  C. Ning,et al.  Far-field emission of a semiconductor nanowire laser. , 2004, Optics letters.

[196]  J. D. Kingsley,et al.  Coherent Light Emission From GaAs Junctions , 1962 .

[197]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[198]  L. Tong,et al.  Single mode lasing in coupled nanowires , 2011 .

[199]  D. G. Thomas,et al.  Optical Properties of Bound Exciton Complexes in Cadmium Sulfide , 1962 .

[200]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[201]  Robert P. H. Chang,et al.  Random laser action in semiconductor powder , 1999 .

[202]  Y. Hsu,et al.  Low temperature growth and dimension- dependent photoluminescence efficiency of semiconductor nanowires , 2005 .

[203]  Zhong Lin Wang,et al.  High-quality alloyed CdSxSe1-x whiskers as waveguides with tunable stimulated emission. , 2006, The journal of physical chemistry. B.

[204]  Huili Grace Xing,et al.  Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids. , 2007, Nano letters.

[205]  Y. Qian,et al.  Simultaneous In Situ Formation of ZnS Nanowires in a Liquid Crystal Template by γ-Irradiation , 2001 .

[206]  Qing Yang,et al.  Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. , 2009, Nano letters.

[207]  Y. Bando,et al.  Spontaneous growth and luminescence of zinc sulfide nanobelts , 2003 .

[208]  S. Leone,et al.  Ultrafast wavelength-dependent lasing-time dynamics in single ZnO nanotetrapod and nanowire lasers. , 2005, The journal of physical chemistry. B.

[209]  R. Ma,et al.  Light coupling and modulation in coupled nanowire ring-Fabry-Pérot cavity. , 2009, Nano letters.

[210]  Y. S. Zhang,et al.  Size dependence of Young's modulus in ZnO nanowires. , 2006, Physical review letters.

[211]  F. Capasso,et al.  Low threshold room-temperature lasing of CdS nanowires , 2012, Nanotechnology.