Primary productivity and its regulation in the equatorial Pacific during and following the 1991–1992 El Niño

[1]  K. Johnson,et al.  Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean , 1996, Nature.

[2]  J. Cullen Status of the iron hypothesis after the Open-Ocean Enrichment Experiment1 , 1995 .

[3]  Allan R. Robinson,et al.  Coupled physical and biological modelling of the spring bloom in the North Atlantic (II): three dimensional bloom and post-bloom processes , 1995 .

[4]  M. Mcphaden,et al.  Forcing of intraseasonal Kelvin waves in the equatorial Pacific , 1995 .

[5]  F. Wilkerson,et al.  The role of a silicate pump in driving new production , 1995 .

[6]  Robert R. Bidigare,et al.  On the chlorophyll a retention properties of glass‐fiber GF/F filters , 1995 .

[7]  M. McCormick,et al.  Atmospheric effects of the Mt Pinatubo eruption , 1995, Nature.

[8]  Ricardo M Letelier,et al.  Ecosystem changes in the North Pacific subtropical gyre attributed to the 1991–92 El Niño , 1995, Nature.

[9]  R. Feely,et al.  Physical and Biological Controls on Carbon Cycling in the Equatorial Pacific , 1994, Science.

[10]  William M. Balch,et al.  A line in the sea , 1994, Nature.

[11]  A. J. Watson,et al.  Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean , 1994, Nature.

[12]  F. Morel,et al.  The equatorial Pacific Ocean: Grazer-controlled phytoplankton populations in an iron-limited ecosystem1 , 1994 .

[13]  T. Nielsen,et al.  Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 2. Ciliates , 1994 .

[14]  Barbara Romanowicz,et al.  A first step toward an oceanic geophysical observatory , 1994 .

[15]  R. Feely,et al.  The effect of tropical instability waves on CO2 species distributions along the equator in the eastern equatorial Pacific during the 1992 ENSO event , 1994 .

[16]  U. Siegenthaler,et al.  Atmospheric carbon dioxide and the ocean , 1993, Nature.

[17]  M. Leinen,et al.  Chemical transport to the seafloor of the equatorial Pacific Ocean across a latitudinal transect at 135°W: Tracking sedimentary major, trace, and rare earth element fluxes at the Equator and the Intertropical Convergence Zone , 1993 .

[18]  D. Conley,et al.  Transient variations in phytoplankton productivity at the JGOFS Bermuda time series station , 1993 .

[19]  E. Duursma Productivity of the ocean: Present and past: Edited by W.H. Berger, V.S. Smetacek and G. Wefer. John Wiley & Sons, Chichester, UK 1989. A Dahlem Workshop Report, Life Sciences Research Rep. 44. xiii + 471 pp. ISBN 0-471-92246-3 , 1992 .

[20]  T. Platt,et al.  Nutrient control of phytoplankton photosynthesis in the Western North Atlantic , 1992, Nature.

[21]  R. Barber Introduction to the WEC88 cruise: An investigation into why the equator is not greener , 1992 .

[22]  Francisco P. Chavez,et al.  Standing stocks of particulate carbon and nitrogen in the equatorial Pacific at 150°W , 1992 .

[23]  F. Chavez,et al.  Estimating new production in the equatorial Pacific Ocean at 150°W , 1992 .

[24]  B. Jones,et al.  Hydrographic patterns and vertical mixing in the equatorial Pacific along 150°W , 1992 .

[25]  Curtiss O. Davis,et al.  Photosynthetic characteristics and estimated growth rates indicate grazing is the proximate control of primary production in the equatorial Pacific , 1992 .

[26]  B. Frost The role of grazing in nutrient-rich areas of the open sea , 1991 .

[27]  S. Fitzwater,et al.  The case for iron , 1991 .

[28]  F. Chavez,et al.  Oceanic upwelling and productivity in the eastern tropical Pacific , 1991 .

[29]  Francisco P. Chavez,et al.  Regulation of primary productivity rate in the equatorial Pacific , 1991 .

[30]  F. Chavez,et al.  Growth rates, grazing, sinking, and iron limitation of equatorial Pacific phytoplankton , 1991 .

[31]  F. Wilkerson,et al.  Low specific nitrate uptake rate: A common feature of high‐nutrient, low‐chlorophyll marine ecosystems , 1991 .

[32]  F. Morel,et al.  Iron and nitrogen nutrition of equatorial Pacific plankton , 1991 .

[33]  E. Laws,et al.  Impact of an atmospheric-oceanic disturbance on phytoplankton community dynamics in the North Pacific Central Gyre , 1991 .

[34]  R. Feely,et al.  Atmospheric iron inputs and primary productivity: Phytoplankton responses in the North Pacific , 1991 .

[35]  Francisco P. Chavez,et al.  Phytoplankton taxa in relation to primary production in the equatorial Pacific , 1990 .

[36]  I. Fung,et al.  Observational Contrains on the Global Atmospheric Co2 Budget , 1990, Science.

[37]  John H. Martin glacial-interglacial Co2 change : the iron hypothesis , 1990 .

[38]  P. Williams,et al.  A serious inhibition problem from a Niskin sampler during plankton productivity studies , 1989 .

[39]  H. Jannasch,et al.  Nutrient assimilation, export production and 234Th scavenging in the eastern equatorial Pacific , 1989 .

[40]  F. Chavez Size Distribution of phytoplankton in the central and eastern tropical Pacific , 1989 .

[41]  W. Hurlin,et al.  Simulation of the Seasonal Cycle of the Tropical Pacific Ocean , 1987 .

[42]  F. Chavez,et al.  An estimate of new production in the equatorial Pacific , 1987 .

[43]  R. Feely,et al.  Distribution of chemical tracers in the eastern equatorial Pacific during and after the 1982–1983 El Niño/Southern Oscillation event , 1987 .

[44]  T. Platt,et al.  Vertical Nitrate Fluxes in the Oligotrophic Ocean , 1986, Science.

[45]  T. Packard,et al.  Productivity in upwelling areas deduced from hydrographic and chemical fields1 , 1986 .

[46]  Y. Dandonneau,et al.  An empirical approach to the island mass effect in the south tropical Pacific based on sea surface chlorophyll concentrations , 1985 .

[47]  M. Cane,et al.  A Theory for El Ni�o and the Southern Oscillation , 1985, Science.

[48]  J. Marra,et al.  A comparison between noncontaminating and conventional incubation procedures in primary production measurements1 , 1984 .

[49]  Bernard Kilonsky,et al.  Mean Water and Current Structure during the Hawaii-to-Tahiti Shuttle Experiment , 1984 .

[50]  F. Chavez,et al.  Biological Consequences of El Ni�o , 1983, Science.

[51]  S. Fitzwater,et al.  Metal contamination and its effect on primary production measurements1 , 1982 .

[52]  K. Wyrtki An Estimate of Equatorial Upwelling in the Pacific , 1981 .

[53]  P. Müller,et al.  Productivity, sedimentation rate, and sedimentary organic matter in the oceans—I. Organic carbon preservation , 1979 .

[54]  R. Iverson,et al.  Loss of radiocarbon in direct use of Aquasol for liquid scintillation counting of solutions containing 14C‐NaHCO31 , 1976 .

[55]  C. M. Yentsch,et al.  The Physiological State with Respect to Nitrogen of Phytoplankton from Low-Nutrient Subtropical Water as Measured by the Effect of Ammonium Ion on Dark Carbon Dioxide FIXATION1 , 1971 .

[56]  R. Dugdale,et al.  The kinetics of nitrate and ammonia uptake by natural populations of marine phytoplankton , 1969 .

[57]  C. Lorenzen,et al.  Fluorometric Determination of Chlorophyll , 1965 .

[58]  H. Odum,et al.  Fundamentals of ecology , 1954 .

[59]  R. Bidigare,et al.  Spatial and temporal variability of phytoplankton pigment distributions in the central equatorial Pacific Ocean , 1996 .

[60]  F. Chavez,et al.  Phytoplankton variability in the central and eastern tropical Pacific , 1996 .

[61]  Richard T. Barber,et al.  Origin and maintenance of a high nitrate condition in the equatorial Pacific , 1996 .

[62]  J. McCarthy,et al.  New production along 140°W in the equatorial Pacific during and following the 1992 El Niño event , 1996 .

[63]  K. Johnson,et al.  Iron deficiency and phytoplankton growth in the equatorial Pacific , 1996 .

[64]  B. Jones,et al.  A physical estimate of new production in the equatorial Pacific along 150°W , 1995 .

[65]  R. Feely,et al.  CO2 distributions in the equatorial Pacific during the 1991–1992 ENSO event , 1995 .

[66]  Michael R. Landry,et al.  Microzooplankton grazing in the central equatorial Pacific during February and August, 1992 , 1995 .

[67]  James W. Murray,et al.  A U.S. JGOFS process study in the equatorial Pacific (EqPac): Introduction , 1995 .

[68]  R. Bidigare,et al.  Phytoplankton photosynthesis parameters along 140°W in the equatorial Pacific , 1995 .

[69]  R. Barber,et al.  Primary productivity and trace-metal contamination measurements from a clean rosette system versus ultra-clean Go-Flo bottles , 1995 .

[70]  P. Falkowski,et al.  Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean , 1994, Nature.

[71]  K. Banse GRAZING AND ZOOPLANKTON PRODUCTION AS KEY CONTROLS OF PHYTOPLANKTON PRODUCTION IN THE OPEN OCEAN , 1994 .

[72]  S. J. Tanner,et al.  Iron, primary production and carbon-nitrogen flux studies during the JGOFS North Atlantic bloom experiment , 1993 .

[73]  Taro Takahashi,et al.  Primary production at 47°N and 20°W in the North Atlantic Ocean: a comparison between the 14C incubation method and the mixed layer carbon budget , 1993 .

[74]  S. Levitus,et al.  Distribution of nitrate, phosphate and silicate in the world oceans , 1993 .

[75]  Michael J. McPhaden,et al.  TOGA-TAO and the 1991–93 El Niño Southern Oscillation Event , 1993 .

[76]  R. Goericke,et al.  Primary production in the subarctic Pacific Ocean: Project SUPER , 1993 .

[77]  J. Sarmiento Atmospheric CO2 stalled , 1993, Nature.

[78]  A. Knap,et al.  A comparison of in situ and simulated in situ methods for estimating oceanic primary production , 1992 .

[79]  Lewis,et al.  New production in the central equatorial Pacific , 1992 .

[80]  Paul G. Falkowski,et al.  Primary Productivity and Biogeochemical Cycles in the Sea , 1992 .

[81]  R. Feely,et al.  EqPac: A Process Study in the Central Equatorial Pacific , 1992 .

[82]  J. Murray,et al.  Use of the Coastal Zone Color Scanner for EqPac Planning , 1992 .

[83]  P. Falkowski,et al.  PHYSIOLOGICAL LIMITATIONS ON PHYTOPLANKTON PRODUCTIVITY IN THE OCEAN , 1992 .

[84]  K. Banse Grazing, Temporal Changes of Phytoplankton Concentrations, and the Microbial Loop in the Open Sea , 1992 .

[85]  D. M. Nelson,et al.  Role of silicon as a limiting nutrient to Antarctic diatoms: evidence from kinetic studies in the Ross Sea ice-edge zone , 1992 .

[86]  F. Morel,et al.  Iron nutrition of phytoplankton and its possible importance in the ecology of ocean regions with hight nutrient and low biomass , 1991 .

[87]  M. Brzezinski,et al.  Kinetics of silicic acid uptake by natural diatom assemblages in two Gulf Stream warm-core rings , 1990 .

[88]  Oscar Schofield,et al.  Influence of zeaxanthin on quantum yield of photosynthesis of Synechococcus clone WH7803 (DC2) , 1989 .

[89]  G. Eldin,et al.  Southwestward extent of chlorophyll-enriched waters from the Peruvian and equatorial upwellings between Tahiti and Panama , 1987 .

[90]  D. Halpern,et al.  Vertical motion in the upper ocean of the equatorial Eastern Pacific , 1987 .

[91]  F. Chavez,et al.  Ocean variability in relation to living resources during the 1982–83 El Niño , 1986, Nature.

[92]  F. Azam,et al.  Toxic effects of latex and Tygon tubing on marine phytoplankton, zooplankton and bacteria , 1986 .

[93]  Thomas L. Hayward,et al.  DETERMINING CHLOROPHYLL ON THE 1984 CALCOFI SURVEYS , 1984 .

[94]  R. Barber The JOINT-I expedition of the coastal upwelling ecosystems analysis program , 1977 .

[95]  Richard T. Barber,et al.  Primary production off northwest Africa: the relationship to wind and nutrient conditions , 1977 .

[96]  W. Smith,et al.  Primary production off the coast of northwest Africa: excretion of dissolved organic matter and its heterotrophic uptake , 1977 .

[97]  John J. Walsh,et al.  Herbivory as a factor in patterns of nutrient utilization in the sea1 , 1976 .

[98]  J. Ryther,et al.  Organic chelators: Factors affecting primary production in the cromwell current upwelling☆ , 1969 .

[99]  H. W. Harvey The chemistry and fertility of sea waters , 1955 .

[100]  G. Arrhenius Sediment Cores from the East Pacific , 1953 .