Combining multiple inclusion representations in numerical constraint propagation

This work proposes a novel generic scheme enabling the combination of multiple inclusion representations to propagate numerical constraints. The scheme allows bringing into the constraint propagation framework the strength of inclusion techniques coming from different areas. The scheme is based on the DAG representation of the constraint system. This enables devising fine-grained combination strategies involving any factorable constraint system. The paper presents several possible combination strategies for creating practical instances of the generic scheme. The experiments reported on a particular instance using interval constraint propagation, interval arithmetic, affine arithmetic and linear programming illustrate the flexibility and efficiency of the approach.

[1]  M. H. van Emden,et al.  Interval arithmetic: From principles to implementation , 2001, JACM.

[2]  Louis B. Rall Automatic error analysis , 1981 .

[3]  Arnold Neumaier,et al.  Safe bounds in linear and mixed-integer linear programming , 2004, Math. Program..

[4]  Victor Joseph. Monte Leon Automatic error analysis in finite digital computations, using range arithmetic. , 1966 .

[5]  Ralph R. Martin,et al.  Comparison of interval methods for plotting algebraic curves , 2002, Comput. Aided Geom. Des..

[6]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[7]  David A. McAllester,et al.  Solving Polynomial Systems Using a Branch and Prune Approach , 1997 .

[8]  Hermann Schichl,et al.  Using directed acyclic graphs to coordinate propagation and search for numerical constraint satisfaction problems , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.

[9]  J. Stolfi,et al.  Aane Arithmetic and Its Applications to Computer Graphics , 1990 .

[10]  R. B. Kearfott,et al.  Interval Computations: Introduction, Uses, and Resources , 2000 .

[11]  Ramon E. Moore Interval arithmetic and automatic error analysis in digital computing , 1963 .

[12]  Frédéric Goualard,et al.  Revising Hull and Box Consistency , 1999, ICLP.

[13]  Yahia Lebbah,et al.  A Global Filtering Algorithm for Handling Systems of Quadratic Equations and Inequations , 2002, CP.

[14]  Marius-Calin Silaghi,et al.  Numerical Constraint Satisfaction Problems with Non-isolated Solutions , 2002, COCOS.

[15]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[16]  Pascal Van Hentenryck,et al.  CLP(Intervals) Revisited , 1994, ILPS.

[17]  Hermann Schichl,et al.  Interval Analysis on Directed Acyclic Graphs for Global Optimization , 2005, J. Glob. Optim..

[18]  Frédéric Messine,et al.  Extentions of Affine Arithmetic: Application to Unconstrained Global Optimization , 2002, J. Univers. Comput. Sci..

[19]  Lubomir V. Kolev Automatic Computation of a Linear Interval Enclosure , 2001, Reliab. Comput..

[20]  A. Neumaier Interval methods for systems of equations , 1990 .

[21]  Lubomir V. Kolev A New Method for Global Solution of Systems of Non-Linear Equations , 1998, Reliab. Comput..

[22]  J. C. Burkill Functions of Intervals , 1924 .

[23]  W. Szymanowski,et al.  BULLETIN DE L'ACADEMIE POLONAISE DES SCIENCES , 1953 .

[25]  Shinya Miyajima,et al.  A New Dividing Method in Affine Arithmetic , 2003, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[26]  Frédéric Benhamou,et al.  Applying Interval Arithmetic to Real, Integer, and Boolean Constraints , 1997, J. Log. Program..

[27]  Pascal Van Hentenryck,et al.  Numerica: A Modeling Language for Global Optimization , 1997, IJCAI.

[28]  Lubomir V. Kolev,et al.  An Improved Interval Linearization for Solving Nonlinear Problems , 2004, Numerical Algorithms.

[29]  De Figueiredo,et al.  Self-validated numerical methods and applications , 1997 .