Generation of universal linear optics by any beam splitter

In 1994, Reck et al. showed how to realize any unitary transformation on a single photon using a product of beamsplitters and phaseshifters. Here we show that any single beamsplitter that nontrivially mixes two modes, also densely generates the set of unitary transformations (or orthogonal transformations, in the real case) on the single-photon subspace with m>=3 modes. (We prove the same result for any two-mode real optical gate, and for any two-mode optical gate combined with a generic phaseshifter.) Experimentally, this means that one does not need tunable beamsplitters or phaseshifters for universality: any nontrivial beamsplitter is universal for linear optics. Theoretically, it means that one cannot produce "intermediate" models of linear optical computation (analogous to the Clifford group for qubits) by restricting the allowed beamsplitters and phaseshifters: there is a dichotomy; one either gets a trivial set or else a universal set. No similar classification theorem for gates acting on qubits is currently known. We leave open the problem of classifying optical gates that act on three or more modes.

[1]  E. Cartan,et al.  La théorie des groupes finis et continus et l'Analysis situs , 1952 .

[2]  Yaoyun Shi Both Toffoli and controlled-NOT need little help to do universal quantum computing , 2003, Quantum Inf. Comput..

[3]  R. Jozsa,et al.  Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  Patrick Otto Ludl,et al.  On the characterization of the SU(3)-subgroups of type C and D , 2013, 1310.3746.

[5]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[6]  K. Maurin Representations of Compact Lie Groups , 1997 .

[7]  Edwin D. Mares,et al.  On S , 1994, Stud Logica.

[8]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[9]  Patrick Otto Ludl,et al.  Comments on the classification of the finite subgroups of SU(3) , 2011, 1101.2308.

[10]  Peter D. Jarvis,et al.  Group22 : proceedings of the XXII International Colloquium on Group Theoretical Methods in Physics, Hobart, July 13-17, 1998 , 1999 .

[11]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[12]  Stephen P. Jordan,et al.  Permutational quantum computing , 2009, Quantum Inf. Comput..

[13]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[14]  W. H. Klink,et al.  Finite and Disconnected Subgroups of SU3 and their Application to the Elementary‐Particle Spectrum , 1964 .

[15]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[16]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[17]  W. Marsden I and J , 2012 .

[18]  N. J. Cerf,et al.  Optical simulation of quantum logic , 1998 .

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[21]  Barry C. Sanders,et al.  Requirement for quantum computation , 2003 .

[22]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[23]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[24]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[25]  Yang-Hui He,et al.  A Monograph on the classification of the discrete subgroups of SU(4) , 1999 .

[26]  Yang-Hui He,et al.  Non-Abelian Finite Gauge Theories , 1998 .

[27]  Patrick Otto Ludl,et al.  Finite flavour groups of fermions , 2011, 1110.6376.

[28]  Richard Jozsa,et al.  Classical simulation complexity of extended Clifford circuits , 2013, Quantum Inf. Comput..