Parameters behind "non-parametric" statistics: Kendall's ¿a, Somers' D and median dierences

So-called “non-parametric” statistical methods are often in fact based on population parameters, which can be estimated (with confidence limits) using the corresponding sample statistics. This article reviews the uses of three such parameters, namely Kendall’s ?a, Somers’ D and the Hodges-Lehmann median dierence. Confidence intervals for these are demonstrated using the somersd package. It is argued that confidence limits for these parameters, and their dierences, are more informative than the traditional practice of reporting only P-values. These three parameters are also important in defining other tests and parameters, such as the Wilcoxon test, the area under the receiver operating characteristic (ROC) curve, Harrell’s C, and the Theil median slope.

[1]  M. F. Fuller,et al.  Practical Nonparametric Statistics; Nonparametric Statistical Inference , 1973 .

[2]  E. DeLong,et al.  Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. , 1988, Biometrics.

[3]  C A Beam,et al.  Analysis of clustered data in receiver operating characteristic studies , 1998, Statistical methods in medical research.

[4]  F. Harrell,et al.  Prognostic/Clinical Prediction Models: Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors , 2005 .

[5]  R. A. Groeneveld,et al.  Practical Nonparametric Statistics (2nd ed). , 1981 .

[6]  W. Kruskal Ordinal Measures of Association , 1958 .

[7]  L. M. Anderson Statistics with Confidence. Confidence Intervals and Statistical Guidelines , 1989 .

[8]  J. Hanley,et al.  The meaning and use of the area under a receiver operating characteristic (ROC) curve. , 1982, Radiology.

[9]  R. Newson Robust confidence intervals for median and other percentile differences between two groups , 2001 .

[10]  P. Sprent,et al.  Non-Parametric Regression , 1983 .

[11]  Robert H. Somers,et al.  A new asymmetric measure of association for ordinal variables. , 1962 .

[12]  F. Harrell,et al.  Evaluating the yield of medical tests. , 1982, JAMA.

[13]  E. Gehan A GENERALIZED WILCOXON TEST FOR COMPARING ARBITRARILY SINGLY-CENSORED SAMPLES. , 1965, Biometrika.

[14]  N. Cliff Ordinal methods for behavioral data analysis , 1996 .

[15]  N. Fisher Graphical Methods in Nonparametric Statistics: A Review and Annotated Bibliography , 1983 .

[16]  N. Cliff Dominance statistics: Ordinal analyses to answer ordinal questions. , 1993 .

[17]  N A Obuchowski,et al.  Nonparametric analysis of clustered ROC curve data. , 1997, Biometrics.

[18]  H. Theil A Rank-Invariant Method of Linear and Polynomial Regression Analysis , 1992 .

[19]  M J Campbell,et al.  Statistics in Medicine: Calculating confidence intervals for some non-parametric analyses , 1988 .

[20]  J. L. Hodges,et al.  Estimates of Location Based on Rank Tests , 1963 .

[21]  Duolao Wang Hodges-Lehmann estimation of a shift in location between two populations , 2000 .

[22]  M. Kendall,et al.  Rank and product-moment correlation. , 1949, Biometrika.

[23]  C. F. Kossack,et al.  Rank Correlation Methods , 1949 .

[24]  M. Edwardes A confidence interval for Pr(X Y) estimated from simple cluster samples. , 1995 .

[25]  M. Kendall,et al.  Rank Correlation Methods (5th ed.). , 1992 .

[26]  P. Sen Estimates of the Regression Coefficient Based on Kendall's Tau , 1968 .

[27]  R. Newson somersd-Confidence intervals for nonparametric statistics and their differences , 2001 .

[28]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[29]  P. Sprent,et al.  19. Applied Nonparametric Statistical Methods , 1995 .